Nav: Home

Researchers aiming to cure spina bifida get a step closer to their goal

March 07, 2019

Researchers on the path to finding a cure for spina bifida have identified specific elements in stem cell secretions as key to protecting neurons and ultimately reducing the lower-limb paralysis associated with the birth defect.

Those elements are exosomes -- vesicles that transfer molecules from cell to cell -- and a small carbohydrate-binding protein known as galectin 1.

The team will use the results to optimize the neuroprotective qualities of a stem cell treatment they developed to improve the mobility issues associated with spina bifida.

Published in the Journal of the Federation of American Societies for Experimental Biology, the study was led by Aijun Wang, co-director of the UC Davis Health Surgical Bioengineering Laboratory.

Altering the outcomes of spina bifida

UC Davis Health fetal surgeon and study co-author Diana Farmer first showed that prenatal surgery reduces neurological defects in children with spina bifida, which occurs when the spinal cord does not properly close before birth. Children with the condition experience a range of lifelong cognitive, urological, musculoskeletal and motor disabilities.

Farmer and Wang, her chief collaborator, later showed that prenatal surgery combined with human placenta-derived mesenchymal stromal cells (PMSCs) improved hind limb control in lab animals and dogs with spina bifida.

"We wanted to know the specific mechanisms of action of the PMSC treatment that protect neurons," Wang said. "Our new results provide evidence that stem cell secretions containing exosomes that express galectin 1 are an important part of the therapeutic benefits and give us a path for optimizing the neuroprotective qualities of the treatment."

Hope for a cell-free treatment

The new study also could help the researchers produce a cell-free treatment for spina bifida and other spinal cord injuries based on byproducts of stem cells rather than the stem cells themselves, according to Wang.

Stem cells can heal, however they also can influence the broader immune system and treatment site, making the possibility of cell-free treatment highly attractive.

"Stem cell secretions can have the same or similar healing qualities, but also are a more stable and controllable product," Wang said. "We are excited about what we see so far and are anxious to further explore the clinical applications of this research."

In addition to Wang and Farmer, study authors were Priyadarsini Kumar, James Becker, Kewa Gao, Randy Carney, Lee Lankford, Benjamin Keller, Kyle Herout and Kit Lam, all of UC Davis Health. Gao also is affiliated with The Third Xiangya Hospital of Central South University in China.
-end-
Their study, titled "Neuroprotective Effect of Placenta-Derived Mesenchymal Stromal Cells: Role of Exosomes," is available online.

This work was funded by the California Institute of Regenerative Medicine, Craig H. Neilsen Foundation, Shriners Hospitals for Children, National Institutes of Health (grant numbers 5R01NS10076102, R03HD09160101), March of Dimes Foundation and UC Davis Center for Biophotonics.

More information about UC Davis Health and its Department of Surgery is at health.ucdavis.edu. More information about spina bifida and its treatment is on the UC Davis Children's Hospital website.

University of California - Davis Health

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...