Nav: Home

Proof of pimple: Mouse model validates how 'good' and 'bad' bacteria affect acne

March 07, 2019

Researchers have long believed that Propionibacterium acnes causes acne. But these bacteria are plentiful on everyone's skin and yet not everyone gets acne, or experiences it to the same degree. Genetic sequencing recently revealed that not all P. acnes are the same -- there are different strains, some of which are abundant in acne lesions and some that are never found there.

Still, acne research and therapeutic development have been hampered by the lack of an animal model that replicates the human condition. When administered to mice, for example, P. acnes don't cause long-term skin lesions and the mouse immune system rapidly clears away the bacteria. Now, however, researchers at University of California San Diego School of Medicine, Cedars-Sinai and UCLA have developed a new mouse model that closely resembles human acne by adding one new factor -- a synthetic sebum, the waxy skin secretion that increases in human adolescence.

For the first time, the model, described in a paper publishing March 7, 2019 in JCI Insight, allowed the researchers to directly compare "good" (health-associated) and "bad" (acne-associated) strains of P. acnes bacteria in a way that is more relevant to human acne than in previous attempts.

"Since we know exactly which genes differ between these strains, next we can pinpoint exactly what it is about the acne-associated strains that allows them to cause skin lesions," said George Y. Liu, MD, PhD, professor and chief of the Division of Pediatric Infectious Diseases at UC San Diego School of Medicine. "And that information will help us develop new therapies that specifically block those acne-promoting factors, or tip the balance of a person's skin chemistry in favor of the healthy strains."

Liu was a faculty member at Cedars-Sinai at the time of the study.

Liu and team prepared synthetic sebum by following a recipe they found in a previous scientific study, a simple concoction of four ingredients -- fatty acid, triglyceride, wax and squalene, a precursor compound to sterols, such as cholesterol and steroid hormones -- in ratios that resemble human sebum. (Mice produce skin sebum, too, but its makeup is different.)

"When we started working with these bacteria and checked out the animal models others have been using over the years, we thought 'we've got to come up with something better than this,'" Liu said. "Acne typically occurs when a person hits their teenage years ...What's the difference between a child's skin and a teenager's skin? Increased sebum production. And we were surprised to find how such a simple addition made a big difference in our ability to study acne."

The researchers inoculated mice with P. acnes and applied fresh sebum daily. Without the sebum, the mice had minimal lesions and the bacteria were rapidly cleared from the site of administration. With the sebum alone, there was no effect on the skin.

But when Liu and team applied both sebum and acne-associated strains of P. acnes, they saw what looked like human acne, and the bacteria survived for weeks. These P. acnes strains also caused inflammation in the skin, as measured by elevated levels of inflammatory molecules called cytokines.

Then the researchers tried the same with health-associated strains of P. acnes -- strains that aren't found in human acne lesions. The same amount of bacteria was still present on the skin three days after inoculation, no matter the strain applied. But researchers could clearly see the differences between strains just by looking at the mice, Liu said. Lesions caused by acne-associated P. acnes strains scored approximately two times higher than lesions caused by health-associated strains in a measure that takes into account a lesion's size, redness, dryness and degree of skin sloughing.

Unlike people, the mice in these experiments were all genetically identical. Liu said that's important because it means that the differences in acne severity were due only to differences between the bacterial strains, not differences in the mice's innate ability to react to the bacteria.

Next, the team hopes to improve upon its acne mouse model so they can achieve similar results when the bacteria are applied topically rather than administered by injection under the skin. They also want to study the genes that are unique to acne-associated P. acnes strains and determine what it is about human sebum that promotes these strains.

Liu said this information could help the team better understand who is at increased risk for acne, and how to develop personalized therapies and vaccines that target the acne-promoting bacterial factors or sebum components.
-end-
Co-authors of this study include: Stacey L. Kolar, Juan Torres, Xuemo Fan, Cedars-Sinai; Chih-Ming Tsai, Cedars-Sinai and UC San Diego; and Huiying Li, UCLA.

University of California - San Diego

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".