Nav: Home

It's raining on the Greenland ice -- in the winter

March 07, 2019

Rainy weather is becoming increasingly common over parts of the Greenland ice sheet, triggering sudden melting events that are eating at the ice and priming the surface for more widespread future melting, says a new study. Some parts of the ice sheet are even receiving rain in winter--a phenomenon that will spread as climate continues to warm, say the researchers. The study appears this week in the European scientific journal The Cryosphere.

Greenland has been losing ice in recent decades due to progressive warming. Since about 1990, average temperatures over the ice sheet have increased by as much as 1.8 degrees C (3.2F) in summer, and up to 3 degrees C (5.4F) in winter. The 660,000-square-mile sheet is now believed to be losing about 270 billion tons of ice each year. For much of this time, most of this was thought to come from icebergs calving into the ocean, but recently direct meltwater runoff has come to dominate, accounting for about 70 percent of the loss. Rainy weather, say the study authors, is increasingly becoming the trigger for that runoff.

The researchers combined satellite imagery with on-the-ground weather observations from 1979 to 2012 in order to pinpoint what was triggering melting in specific places. Satellites are used to map melting in real time because their imagery can distinguish snow from liquid water. About 20 automated weather stations spread across the ice offer concurrent data on temperature, wind and precipitation. Combining the two sets of data, the researchers zeroed in on more than 300 events in which they found the initial trigger for melting was weather that brought rain. "That was a surprise to see," said the study's lead author, Marilena Oltmanns of Germany's GEOMAR Centre for Ocean Research. She said that over the study period, melting associated with rain and its subsequent effects doubled during summer, and tripled in winter. Total precipitation over the ice sheet did not change; what did change was the form of precipitation. All told, the researchers estimate that nearly a third of total runoff they observed was initiated by rainfall.

Melting can be driven by a complex of factors, but the introduction of liquid water is one of the most powerful, said Marco Tedesco, a glaciologist at Columbia University's Lamont-Doherty Earth Observatory and coauthor of the study. Warm air, of course, can melt ice directly, but is not very efficient by itself, he said. However, warmer temperatures can produce cascading effects. One is that they make it more likely that atmospheric conditions will pass the threshold where precipitation comes down as rain, not snow. Liquid water carries a great deal of heat, and when it soaks into a snowy surface, it melts the snow around it, releasing more energy. Meanwhile, the warm air that brought the rain often forms clouds, which hem in the heat.

This combination of factors produces a pulse of melting that feeds on itself, and well outlasts the rain itself, often by several days. Furthermore, the scientists found that the length of these pulses increased over the decades they analyzed, in cold weather from two days to three, and in the brief summer, from two days to five.

There are longer-term effects, say the study authors. They believe that part of the meltwater runs off, but the rest refreezes in place, morphing normally fluffy, reflective snow on or near the surface into darker, denser masses of ice. This ice absorbs solar radiation more easily than snow, so when the sun comes out, it melts more easily, producing more liquid water, which feeds more melting, in a vicious feedback loop. This, said Tedesco, has led to more and earlier melting in the summer. And because the surface has been hardened into ice, much of that meltwater can more easily flow off the ice sheet toward the sea.

"If it rains in the winter, that preconditions the ice to be more vulnerable in the summer," said Tedesco. "We are starting to realize, you have to look at all the seasons."

While rain is hitting increasingly far-flung parts of the ice in summer, winter rainfall so far appears mostly confined to lower elevations in south and southwest Greenland. It is brought in by moist, relatively warm ocean winds from the south, which some communities in other areas call neqqajaaq. These winds may be getting more common due to climate-induced shifts in the jet stream. The elevation of the ice sheet increases further inland and it is thus colder and snowier there; but if average temperatures continue to increase as expected, the line where the moisture comes down as rain instead of snow will rapidly move inward, upward and northward. "The ice should be gaining mass in winter when it snows, but an increasing part of the mass gain from precipitation is lost by melt," said Oltmanns.

Greenland is not the only place in the far north affected by increasing rain. In recent years, anomalous winter rains have hit the northern Canadian tundra, then refrozen over the surface, sealing in plants that caribou and musk oxen normally forage through the loose snow; in some years, this has decimated herds. And a just-published study from near Fairbanks, Alaska, shows that increasing spring rains are percolating down through the permafrost, thawing it and releasing large amounts of methane, a highly efficient greenhouse gas.

Between 1993 and 2014, global sea-level rise accelerated from about 2.2 millimeters a year to 3.3 millimeters, and much of that acceleration is thought to be due to melting in Greenland. Projections of sea-level rise for the end of this century generally range from two to four feet, but most projections do not yet account for what may happen to the ice in Greenland, nor with the much larger mass in Antarctica, because understanding of the physics is still not advanced enough.

Richard Alley, a prominent glaciologist at Pennsylvania State University, said that the new paper adds to the understanding. "The big picture is clear and unchanged," he said. "Warming melts ice," But, he added, the specific processes that will carry this "need to be quantified, understood and incorporated into models. This new paper does important work understanding and quantifying."
-end-
The study was coauthored by Fiammetta Straneo of Scripps Institution of Oceanography.

Further images and background information: https://bit.ly/2Ou6rwz

The paper, "Increased Greenland melt triggered by large-scale, year-round cyclonic moisture intrusions," is available from the authors or the Earth Institute press office.

Scientist contacts:

Marco Tedesco mtedesco@ldeo.columbia.edu

Marilena Oltmanns moltmanns@geomar.de

Fiammetta Straneo fstraneo@ucsd.edu

More information: Kevin Krajick, Senior editor, science news, The Earth Institute/Lamont-Doherty Earth Observatory kkrajick@ei.columbia.edu 212-854-9729

Lamont-Doherty Earth Observatory is Columbia University's home for Earth science research. Its scientists develop fundamental knowledge about the origin, evolution and future of the natural world, from the planet's deepest interior to the outer reaches of its atmosphere, on every continent and in every ocean, providing a rational basis for the difficult choices facing humanity. http://www.ldeo.columbia.edu | @LamontEarth

The Earth Institute, Columbia University mobilizes the sciences, education and public policy to achieve a sustainable earth. http://www.earth.columbia.edu.

Earth Institute at Columbia University

Related Ice Sheet Articles:

Greenland ice sheet meltwater can flow in winter, too
Liquid meltwater can sometimes flow deep below the Greenland Ice Sheet in winter, not just in the summer, according to CIRES-led work published in the AGU journal Geophysical Research Letters today.
Ice sheet melting: Estimates still uncertain, experts warn
Estimates used by climate scientists to predict the rate at which the world's ice sheets will melt are still uncertain despite advancements in technology, new research shows.
Thousands of meltwater lakes mapped on the east Antarctic ice sheet
The number of meltwater lakes on the surface of the East Antarctic Ice Sheet is more significant than previously thought, according to new research.
Researchers discover ice is sliding toward edges off Greenland Ice Sheet
They found that ice slides over the bedrock much more than previous theories predicted of how ice on the Greenland Ice Sheet moves.
A clearer picture of global ice sheet mass
Fluctuations in the masses of the world's largest ice sheets carry important consequences for future sea level rise, but understanding the complicated interplay of atmospheric conditions, snowfall input and melting processes has never been easy to measure due to the sheer size and remoteness inherent to glacial landscapes.
Researchers discover more than 50 lakes beneath the Greenland Ice Sheet
Researchers have discovered 56 previously uncharted subglacial lakes beneath the Greenland Ice Sheet bringing the total known number of lakes to 60.
Ice-sheet variability during the last ice age from the perspective of marine sediment
By using marine sediment cores from Northwestern Australia, a Japanese team led by National Institute of Polar Research (NIPR) and the University of Tokyo revealed that the global ice sheet during the last ice age had changed in shorter time scale than previously thought.
Novel hypothesis goes underground to predict future of Greenland ice sheet
The Greenland ice sheet melted a little more easily in the past than it does today because of geological changes, and most of Greenland's ice can be saved from melting if warming is controlled, says a team of Penn State researchers.
Greenland's southwest ice sheet particularly sensitive to warming
The ice fields of southwest Greenland are becoming particularly sensitive to a climate cycle called the North Atlantic Oscillation as global warming proceeds.
Antarctic ice sheet could suffer a one-two climate punch
Variations in the axial tilt of the Earth have significant implications for the rise and fall of the Antarctic Ice Sheet, the miles-deep blanket of ice that locks up huge volumes of water that, if melted, would dramatically elevate sea level and alter the world's coastlines.
More Ice Sheet News and Ice Sheet Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.