Nav: Home

BU researchers develop 'acoustic metamaterial' that cancels sound

March 07, 2019

Boston University researchers, Xin Zhang, a professor at the College of Engineering, and Reza Ghaffarivardavagh, a Ph.D. student in the Department of Mechanical Engineering, released a paper in Physical Review B demonstrating it's possible to silence noise using an open, ringlike structure, created to mathematically perfect specifications, for cutting out sounds while maintaining airflow.

"Today's sound barriers are literally thick heavy walls," says Ghaffarivardavagh. Although noise-mitigating barricades, called sound baffles, can help drown out the whoosh of rush hour traffic or contain the symphony of music within concert hall walls, they are a clunky approach not well suited to situations where airflow is also critical. Imagine barricading a jet engine's exhaust vent--the plane would never leave the ground. Instead, workers on the tarmac wear earplugs to protect their hearing from the deafening roar.

Ghaffarivardavagh and Zhang let mathematics--a shared passion that has buoyed both of their engineering careers and made them well-suited research partners--guide them toward a workable design for what the acoustic metamaterial would look like.

They calculated the dimensions and specifications that the metamaterial would need to have in order to interfere with the transmitted sound waves, preventing sound--but not air--from being radiated through the open structure. The basic premise is that the metamaterial needs to be shaped in such a way that it sends incoming sounds back to where they came from, they say.

As a test case, they decided to create a structure that could silence sound from a loudspeaker. Based on their calculations, they modeled the physical dimensions that would most effectively silence noises. Bringing those models to life, they used 3D printing to materialize an open, noise-canceling structure made of plastic.

Trying it out in the lab, the researchers sealed the loudspeaker into one end of a PVC pipe. On the other end, the tailor-made acoustic metamaterial was fastened into the opening. With the hit of the play button, the experimental loudspeaker set-up came oh-so-quietly to life in the lab. Standing in the room, based on your sense of hearing alone, you'd never know that the loudspeaker was blasting an irritatingly high-pitched note. If, however, you peered into the PVC pipe, you would see the loudspeaker's subwoofers thrumming away.

The metamaterial, ringing around the internal perimeter of the pipe's mouth, worked like a mute button incarnate until the moment when Ghaffarivardavagh reached down and pulled it free. The lab suddenly echoed with the screeching of the loudspeaker's tune.

"The moment we first placed and removed the silencer...was literally night and day," says Jacob Nikolajczyk, who in addition to being a study co author and former undergraduate researcher in Zhang's lab is a passionate vocal performer. "We had been seeing these sorts of results in our computer modeling for months--but it is one thing to see modeled sound pressure levels on a computer, and another to hear its impact yourself."

By comparing sound levels with and without the metamaterial fastened in place, the team found that they could silence nearly all--94 percent to be exact--of the noise, making the sounds emanating from the loudspeaker imperceptible to the human ear.

Now that their prototype has proved so effective, the researchers have some big ideas about how their acoustic-silencing metamaterial could go to work making the real world quieter.

"Drones are a very hot topic," Zhang says. Companies like Amazon are interested in using drones to deliver goods, she says, and "people are complaining about the potential noise."

"The culprit is the upward-moving fan motion," Ghaffarivardavagh says. "If we can put sound-silencing open structures beneath the drone fans, we can cancel out the sound radiating toward the ground."

Closer to home--or the office--fans and HVAC systems could benefit from acoustic metamaterials that render them silent yet still enable hot or cold air to be circulated unencumbered throughout a building.

Ghaffarivardavagh and Zhang also point to the unsightliness of the sound barriers used today to reduce noise pollution from traffic and see room for an aesthetic upgrade. "Our structure is super lightweight, open, and beautiful. Each piece could be used as a tile or brick to scale up and build a sound-canceling, permeable wall," they say.

The shape of acoustic-silencing metamaterials, based on their method, is also completely customizable, Ghaffarivardavagh says. The outer part doesn't need to be a round ring shape in order to function.

"We can design the outer shape as a cube or hexagon, anything really," he says. "When we want to create a wall, we will go to a hexagonal shape" that can fit together like an open-air honeycomb structure.

Such walls could help contain many types of noises. Even those from the intense vibrations of an MRI machine, Zhang says.

According to Stephan Anderson, a professor of radiology at BU School of Medicine and a coauthor of the study, the acoustic metamaterial could potentially be scaled "to fit inside the central bore of an MRI machine," shielding patients from the sound during the imaging process.

Zhang says the possibilities are endless, since the noise mitigation method can be customized to suit nearly any environment: "The idea is that we can now mathematically design an object that can block the sounds of anything," she says.
-end-


Boston University

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...