Nav: Home

Three ways studying organic chemistry changes the brain

March 07, 2019

Academic learning is about gaining new knowledge and skill, but only recently has it been possible to see new knowledge appear in a human brain.

A new study from Carnegie Mellon University researchers using multiple imaging modalities shows that learning scientific information results in changes in the actual structure of memory-related areas of the brain, changes due to the encoding of the new information in these memory-related brain areas, and changes in the coordination among the network nodes that jointly contain the new information.

"These new discoveries about the neuroscience of learning open the possibility of informing and enhancing instructional methods in science," said Marcel Just, the D.O. Hebb University Professor of Psychology at CMU's Dietrich College of Humanities and Social Sciences.

For the study, Just and co-author Timothy Keller, adjunct professor of psychology, taught college students who were not chemistry majors the names and molecular structure of nine organic compounds, including ethanol, while the students were in an MRI scanner.

Using three different types of brain imaging, the researchers found evidence of the three types of changes in the brain, all occurring in exactly the same brain location.

One of the methods measured the movement of water molecules in the brain. Previous histological studies of rodent brains have used this diffusion-based imaging method. As rats learned the layout of a maze, researchers detected decreases in water molecule movement in the left hippocampus.

When this method was applied to human participants learning the names and structures of organic compounds, it revealed a decrease in water diffusivity primarily in the CA (Cornu Ammonis) portion of the left hemisphere hippocampus.

"The hippocampus is a brain structure that is critical for learning new knowledge, and that is precisely where the water molecules slowed down, indicating that the tissues in these students' brains were changing, probably due to synaptic changes," Keller said.

The second method made use of the fact that individual concepts have unique representations or neural signatures in the brain that can be identified using functional MRI (fMRI). This approach uses machine learning to detect these representations based on the person's brain activation pattern. The researchers used this method to identify which of the nine compounds a participant was thinking about, based on the associated brain activation pattern. The researchers found they could identify the neural signatures by looking precisely at that part of the hippocampus where the water molecule motion indicating tissue changes had occurred. The two types of changes occurred in the same 1.3 cubic cm of hippocampus.

A third type of change reflected the development of a brain network that contained the full brain signature of the organic compounds. Not only was the hippocampus involved in these representations, but so were other brain regions, most prominently a region known to support visualization of 3-D structures, the intraparietal sulcus (IPS). The third brain change was an increase in the synchronization of the activity in that very same region of the hippocampus and the IPS, indicating that a network of brain areas showed increased coordination to collectively represent the multiple facets of the concepts.

These three different types of measures -- MR (Magnetic Resonance)-diffusion measures of diffusivity change, fMRI measures of the location of the newly acquired concepts and fMRI-based measures of synchronization -- showed evidence of microstructural, informational and network change in the left hippocampus during the learning of the organic compounds.

The findings hold promise for improving the effectiveness of teaching and learning science.

"For example, a new student's neural representations of a set of key concepts could be compared to those of a successful advanced student to determine whether neural similarity to an expert is an accurate predictor of academic mastery of the concepts," Just said.

The study, "Converging measures of neural change at the microstructural, informational, and cortical network levels in the hippocampus during the learning of the structure of organic compounds," has been published in the journal Brain Structure and Function.
-end-
This research was supported by the Office of Naval Research (Grant number N00014-16-1-2694).

Carnegie Mellon University

Related Hippocampus Articles:

Lack of oxygen doesn't kill infant brain cells, as previously thought
Research, conducted at OHSU and published in the Journal of Neuroscience, raises new concerns about the vulnerability of the preterm brain to hypoxia.
Schizophrenia: Adolescence is the game-changer
Schizophrenia may be related to the deletion syndrome. However, not everyone who has the syndrome necessarily develops psychotic symptoms.
Study reveals breakthrough in understanding long-term memory retrieval
UNLV researchers have discovered a novel method for how two parts of the brain -- the hippocampus and the anterior cingulate cortex (ACC) -- work together to retrieve long-term memories.
How the olfactory brain affects memory
How sensory perception in the brain affects learning and memory processes is far from fully understood.
Penn researchers discover the source of new neurons in brain hippocampus
Researchers have shown, in mice, that one type of stem cell that makes adult neurons is the source of this lifetime stock of new cells in the hippocampus.
Scientists find first evidence for necessary role of the human hippocampus in planning
A team of scientists reports finding the first evidence that the human hippocampus is necessary for future planning.
More than just memories: a new role for the hippocampus during learning
Without an intact hippocampus, forming new memories is impossible. Researchers from Arizona State University and Stanford University found an equally important role for the hippocampus: feeding information to brain areas responsible for learning.
Avoiding the hippocampus during whole-brain radiotherapy prevents cognitive side effects
Whole-brain radiotherapy can be delivered more safely to patients with brain metastases by avoiding the hippocampus according to a randomized phase III NRG Oncology trial presented at the American Society for Radiation Oncology (ASTRO) Annual Meeting
Hippocampus yields clues to treatment strategies for cognitive deficits in MS
'Recent advances in neuroimaging have greatly improved our understanding of the involvement of the hippocampus in MS,' said John DeLuca, PhD, at Kessler Foundation.
Characterizing pig hippocampus could improve translational neuroscience
Researchers have taken further steps toward developing a superior animal model of neurological conditions such as traumatic brain injury and epilepsy, according to a study of miniature pigs published in eNeuro.
More Hippocampus News and Hippocampus Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.