Nav: Home

New research on the role of connectomics in brain development

March 07, 2019

New Rochelle, NY, March 7, 2019--Researchers are analyzing brain connectomes to understand how normal and abnormal interactions between functional brain networks affect healthy brain development and contribute to disorders such as epilepsy. The Brain Connectome is the focus of a two-part Special Issue of Brain Connectivity, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. Click here to read the full-text articles free on the Brain Connectivity website through April 7, 2019.

The Special Issues were led by Guest Editors Brent Munsell, PhD, College of Charleston (SC), Guofong Wu, PhD, University of North Carolina at Chapel Hill, Leonardo Bonilha, MD, PhD, Medical University of South Carolina (Charleston), and Paul Laurienti, MD, PhD, Wake Forest School of Medicine (Winston-Salem, NC)

Featured in Part 1 is the article entitled "Asymmetric Insular Connectomics Revealed by Diffusion Magnetic Resonance Imaging Analysis of Healthy Brain Development." In this article, Jacob Levman and coauthors from Boston Children's Hospital (MA), Massachusetts General Hospital (Charlestown), Harvard Medical School (Boston, MA), and St. Francis Xavier University (Antigonish, Canada) focus on a part of the brain called the insula. The researchers present an analysis of structural connectivity between the insula and the rest of the brain across 642 examinations. This research demonstrates the feasibility of performing connectomics (mapping out the many connections in the human brain) with real world clinical data in a pediatric population, supported by high quality data acquisition from Boston Children's Hospital. The study demonstrates the ability to clinically detect neural fiber pathway lateralization in the brain, mapping out hemispheric asymmetries that may help in better understanding how brain structure supports functions such as language tasks and awareness. This study also advances the field of connectomics by demonstrating the remarkable potential from its inclusion in large-scale routine clinical magnetic resonance imaging (MRI).

Sourabh Palande and a team of researchers from University of Utah (Salt Lake City) analyze an approach to visualize brain networks based on how similar the gray matter properties in brain regions are across subjects in the article entitled "Revisiting Abnormalities in Brain Network Architecture Underlying Autism Using Topology-Inspired Statistical Inference." This approach provides a way to visualize brain networks based on how similar the gray matter properties in brain regions are across subjects. Using methods from topological data analysis, the researchers identify abnormalities in a specific network in subjects with autism, the salience network. This network is responsible for processing new or unexpected information in the brain. These results add to growing evidence of statistically significant abnormalities in gray matter structure underlying the salience network in autism.
-end-
Research reported in this publication was supported by the National Institutes of Health under Award Numbers R21MH118739, R03NS091587, R01HD078561, R03NS091587, U01NS093650, R01EB022876, K08MH100609, and R01MH080826. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

About the Journal

Brain Connectivity is the essential peer-reviewed journal covering groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. Published 10 times per year in print and online, the Journal is under the leadership of Founding and Co-Editors-in-Chief Christopher Pawela, PhD, Assistant Professor, Medical College of Wisconsin, and Bharat Biswal, PhD, Professor of Biomedical Engineering, New Jersey Institute of Technology. It includes original peer-reviewed papers, review articles, point-counterpoint discussions on controversies in the field, and a product/technology review section. To ensure that scientific findings are rapidly disseminated, articles are published Instant Online within 72 hours of acceptance, with fully typeset, fast-track publication within 4 weeks. Tables of content and a sample issue may be viewed on the Brain Connectivity website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative medical and biomedical peer-reviewed journals, including Journal of Neurotrauma and Therapeutic Hypothermia and Temperature Management. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, newsmagazines, and books is available on the Mary Ann Liebert, Inc., publishers website.

Mary Ann Liebert, Inc./Genetic Engineering News

Related Autism Articles:

Adulthood with autism
The independence that comes with growing up can be scary for any teenager, but for young adults with autism spectrum disorder and their caregivers, the transition from adolescence to adulthood can seem particularly daunting.
Brain protein mutation from child with autism causes autism-like behavioral change in mice
A de novo gene mutation that encodes a brain protein in a child with autism has been placed into the brains of mice.
Autism and theory of mind
Theory of mind, or the ability to represent other people's minds as distinct from one's own, can be difficult for people with autism.
Potential biomarker for autism
A study of young children with autism spectrum disorder published in JNeurosci reveals altered brain waves compared to typically developing children during a motor control task.
Autism and the smell of fear
Autism typically involves the inability to read social cues. We most often associate this with visual difficulty in interpreting facial expression, but new research at the Weizmann Institute of Science suggests that the sense of smell may also play a central role in autism.
Autism often associated with multiple new mutations
Most autism cases are in families with no previous history of the disorder.
State laws requiring autism coverage by private insurers led to increases in autism care
A new study led by researchers at the Johns Hopkins Bloomberg School of Public Health has found that the enactment of state laws mandating coverage of autism spectrum disorder (ASD) was followed by sizable increases in insurer-covered ASD care and associated spending.
Autism's gender patterns
Having one child with autism is a well-known risk factor for having another one with the same disorder, but whether and how a sibling's gender influences this risk has remained largely unknown.
Pinpointing the origins of autism
The origins of autism remain mysterious. What areas of the brain are involved, and when do the first signs appear?
Genes, ozone, and autism
Exposure to ozone in the environment puts individuals with high levels of genetic variation at an even higher risk for developing autism than would be expected just by adding the two risk factors together, a new analysis shows.
More Autism News and Autism Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.