Nav: Home

What does the Milky Way weigh? Hubble and Gaia investigate

March 07, 2019

We can't put the whole Milky Way on a scale, but astronomers have been able to come up with one of the most accurate measurements yet of our galaxy's mass, using NASA's Hubble Space Telescope and the European Space Agency's Gaia satellite.

The Milky Way weighs in at about 1.5 trillion solar masses (one solar mass is the mass of our Sun), according to the latest measurements. Only a few percent of this is contributed by the approximately 200 billion stars in the Milky Way and includes a 4-million-solar-mass supermassive black hole at the center. Most of the rest of the mass is locked up in dark matter, an invisible and mysterious substance that acts like scaffolding throughout the universe and keeps the stars in their galaxies.

Earlier research dating back several decades used a variety of observational techniques that provided estimates for our galaxy's mass ranging between 500 billion to 3 trillion solar masses. The improved measurement is near the middle of this range.

"We want to know the mass of the Milky Way more accurately so that we can put it into a cosmological context and compare it to simulations of galaxies in the evolving universe," said Roeland van der Marel of the Space Telescope Science Institute (STScI) in Baltimore, Maryland. "Not knowing the precise mass of the Milky Way presents a problem for a lot of cosmological questions."

The new mass estimate puts our galaxy on the beefier side, compared to other galaxies in the universe. The lightest galaxies are around a billion solar masses, while the heaviest are 30 trillion, or 30,000 times more massive. The Milky Way's mass of 1.5 trillion solar masses is fairly normal for a galaxy of its brightness.

Astronomers used Hubble and Gaia to measure the three-dimensional movement of globular star clusters -- isolated spherical islands each containing hundreds of thousands of stars each that orbit the center of our galaxy.

Although we cannot see it, dark matter is the dominant form of matter in the universe, and it can be weighed through its influence on visible objects like the globular clusters. The more massive a galaxy, the faster its globular clusters move under the pull of gravity. Most previous measurements have been along the line of sight to globular clusters, so astronomers know the speed at which a globular cluster is approaching or receding from Earth. However, Hubble and Gaia record the sideways motion of the globular clusters, from which a more reliable speed (and therefore gravitational acceleration) can be calculated.

The Hubble and Gaia observations are complementary. Gaia was exclusively designed to create a precise three-dimensional map of astronomical objects throughout the Milky Way and track their motions. It made exacting all-sky measurements that include many globular clusters. Hubble has a smaller field of view, but it can measure fainter stars and therefore reach more distant clusters. The new study augmented Gaia measurements for 34 globular clusters out to 65,000 light-years, with Hubble measurements of 12 clusters out to 130,000 light-years that were obtained from images taken over a 10-year period.

When the Gaia and Hubble measurements are combined as anchor points, like pins on a map, astronomers can estimate the distribution of the Milky Way's mass out to nearly 1 million light-years from Earth.

"We know from cosmological simulations what the distribution of mass in the galaxies should look like, so we can calculate how accurate this extrapolation is for the Milky Way," said Laura Watkins of the European Southern Observatory in Garching, Germany, lead author of the combined Hubble and Gaia study, to be published in The Astrophysical Journal. These calculations based on the precise measurements of globular cluster motion from Gaia and Hubble enabled the researchers to pin down the mass of the entire Milky Way.

The earliest homesteaders of the Milky Way, globular clusters contain the oldest known stars, dating back to a few hundred million years after the big bang, the event that created the universe. They formed prior to the construction of the Milky Way's spiral disk, where our Sun and solar system reside.

"Because of their great distances, globular star clusters are some of the best tracers astronomers have to measure the mass of the vast envelope of dark matter surrounding our galaxy far beyond the spiral disk of stars," said Tony Sohn of STScI, who led the Hubble measurements.
The international team of astronomers in this study are Laura Watkins (European Southern Observatory, Garching, Germany), Roeland van der Marel (Space Telescope Science Institute, and Johns Hopkins University Center for Astrophysical Sciences, Baltimore, Maryland), Sangmo Tony Sohn (Space Telescope Science Institute, Baltimore, Maryland), and N. Wyn Evans (University of Cambridge, Cambridge, United Kingdom).

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.

Banner image: This illustration shows the fundamental architecture of our island city of stars, the Milky Way galaxy: a spiral disk, central bulge, and diffuse halo of stars and globular star clusters. Not shown is the vast halo of dark matter surrounding our galaxy. Credits: NASA, ESA and A. Feild (STScI)

Ray Villard
Space Telescope Science Institute, Baltimore, Maryland

Laura Watkins
European Southern Observatory, Garching, Germany

Roeland van der Marel
Space Telescope Science Institute, Baltimore, Maryland

NASA/Goddard Space Flight Center

Related Dark Matter Articles:

Does dark matter annihilate quicker in the Milky Way?
Researchers at the Tata Institute of Fundamental Research in Mumbai have proposed a theory that predicts how dark matter may be annihilating much more rapidly in the Milky Way, than in smaller or larger galaxies and the early Universe.
Origin of Milky Way's hypothetical dark matter signal may not be so dark
A mysterious gamma-ray glow at the center of the Milky Way is most likely caused by pulsars.
A new look at the nature of dark matter
A new study suggests that the gravitational waves detected by the LIGO experiment must have come from black holes generated during the collapse of stars, and not in the earliest phases of the Universe.
Dark matter may be smoother than expected
Analysis of a giant new galaxy survey, made with ESO's VLT Survey Telescope in Chile, suggests that dark matter may be less dense and more smoothly distributed throughout space than previously thought.
Supercomputer comes up with a profile of dark matter
In the search for the mysterious dark matter, physicists have used elaborate computer calculations to come up with an outline of the particles of this unknown form of matter.
Mapping the 'dark matter' of human DNA
Researchers from ERIBA, Radboud UMC, XJTU, Saarland University, CWI and UMC Utrecht have made a big step towards a better understanding of the human genome.
Reconciling dwarf galaxies with dark matter
Dwarf galaxies are enigmas wrapped in riddles. Although they are the smallest galaxies, they represent some of the biggest mysteries about our universe.
Did gravitational wave detector find dark matter?
When an astronomical observatory detected two black holes colliding in deep space, scientists celebrated confirmation of Einstein's prediction of gravitational waves.
Dark matter does not contain certain axion-like particles
Researchers at Stockholm University are getting closer to corner light dark-matter particle models.
SDU researchers present a new model for what dark matter might be
There are indications that we might never see the universe's mysterious dark matter.

Related Dark Matter Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"