Nav: Home

Vitamin B3 analogue boosts production of blood cells

March 07, 2019

Stem cell-based therapies are becoming more and more common, especially in the treatment of blood cancers like lymphoma and leukemia. In these cases, the patient's cancerous blood stem cells are removed and replaced with new, healthy ones. However, up to a quarter of cases end in death because replenishing of blood cells is too slow.

One solution to this is to boost the divisions of so-called hematopoietic ("blood-making") stem cells (HSCs); these are the stem cells that produce the various types of blood cells in our bodies - red, white etc. So, pushing HSCs to divide faster would be ideal; the question is how.

We already know that what causes HSCs to slow down is stress: having to reconstitute the entire blood-cell supply system can be overwhelming. In terms of biology, this stress causes increased activity in mitochondria, the energy-producing organelles of the cell.

To meet the high demands of rebuilding blood cells, the mitochondria of the HSCs increase a process called "oxidative phosphorylation", which generates fuel for the cell. But this has cost: boosting the activity of mitochondria causes HSCs to age prematurely.

Drawing on this, a team of scientists led by Olaia Naveiras at EPFL and Nicola Vannini at the Ludwig Institute for Cancer Research Lausanne Branch have now found that an analogue of vitamin B3, nicotinamide riboside, can increase HSCs and boost their activity. The study, which also involved labs from EPFL's Institute of Bioengineering, and the University hospital of Lausanne (CHUV) has significant implications for stem-cell therapy patients, especially since nicotinamide riboside can be taken as a dietary supplement and still have such effects.

When they studied the effects of nicotinamide riboside in vitro the researchers found that exposing human and mouse HSCs to it improves their function and increases mitochondrial recycling - the process by which stressed-out mitochondria get cleared out to make way for fresh ones.

The researchers found that adding nicotinamide riboside to the diet of mice that had undergone an irradiation procedure that eliminates their blood cells - modeling radiotherapy - improved their survival by 80% and accelerated blood recovery. In immunodeficient mice, nicotinamide riboside increased the production of white blood cells (leucocytes).

What all this translates into is a significant improvement in the ability of HSCs to divide and produce new blood cells. The study shows, for the first time, that nicotinamide riboside as a dietary supplement can have a significant positive effect on preventing blood-recovery problems in cancer patients, even after chemo- or radio-therapy.

"We expect nicotinamide riboside and other mitochondrial modulators to become a complementary approach for increasing stem cell fitness and accelerating blood production, either through dietary supplementation or pharmacological administration," says Naveiras.
-end-
Professor Naveiras' lab is part of the Swiss Institute for Experimental Cancer Research (ISREC) within the School of Life Sciences at EPFL. ISREC@EPFL is part of the Swiss Cancer Center Léman (SCCL), a multidisciplinary alliance pursuing fundamental, translational, and clinical cancer research. The SCCL founding members are the Lausanne University Hospital (CHUV), the Geneva University Hospitals (HUG), the universities of Lausanne (UNIL) and Geneva (UNIGE), and EPFL. Professor Naveiras is also a consulting hematologist (Cheffe de Clinique) at the Hematology Service of CHUV.

Other contributors

University of Lausanne (UNIL)
Centre Hospitalier Universitaire Vaudois (CHUV)
Ludwig Institute for Cancer Research
EPFL Laboratory of Stem Cell Bioengineering
EPFL Laboratory of Integrative and Systems Physiology
EPFL Laboratory of System Biology and Genetics
EPFL Flow Cytometry Platform
University Hospital Zürich
Nestlé Research
Democritus University of Thrace

Reference

N. Vannini, V. Campos, M. Girotra, V. Trachsel, S. Rojas-Sutterlin, J. Tratwal, S. Ragusa, E. Stefanidis, D. Ryu, P.Y. Rainer, G. Nikitin, S. Giger, Y.L. Terytty, A. Semilietof, A. Oggier, Y. Yersin, L. Tauzin, E. Pirinen, W. C. Cheng, J. Ratajczak, C. Canto, M. Ehrbar, F. Sizzano, T.V. Petrova, D. Vanhecke, L. Zhang, P. Romero, A. Nahimana, S. Cherix, M. A. Duchosal, P.C. Ho, B. Deplancke, G. Coukos, J. Auwerx, M. P. Lutolf, O. Naveiras. The NAD-booster nicotinamide riboside potently stimulates hematopoiesis through increased mitochondrial clearance. Cell Stem Cell 07 March 2019. DOI: 10.1016/j.stem.2019.02.012

Ecole Polytechnique Fédérale de Lausanne

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".