Nav: Home

Potential new treatment for heart attack

March 07, 2019

Scientists have found a potential new drug for treating the heart damage caused by a heart attack by targeting the way the heart reacts to stress, according to new research published in the journal, Cell Stem Cell and part-funded by the British Heart Foundation (BHF). [1] The research team used stem cells to grow heart tissue and mimic a 'heart attack in a dish', and were able to block the chemical signals within heart muscle that lead to cell death and heart damage.

The team, led by BHF Professor Michael Schneider at the National Heart and Lung Institute, Imperial College London, are the first to discover that a protein called MAP4K4 plays a central role in how heart muscle cells die off as a response to the stress of a heart attack. They have managed to develop a potential drug that targets this protein and can minimise damage after a heart attack by 60 per cent, in mice.

A heart attack happens when a blood clot blocks one of the main coronary arteries, the blood vessels supplying the heart muscle. The heart is starved of oxygen and nutrients and the muscle produces stress signals that ultimately cause heart cells to die. This means that the heart can't pump effectively and this can lead to heart failure. Heart failure is a debilitating condition that makes everyday tasks like climbing stairs, or even getting dressed, exhausting.

Due in large part to research funded by the BHF, more people than ever before are surviving their heart attack after receiving treatments like stents and clot-busting drugs, but this means that the number of people living with heart failure has risen considerably. There are estimated to be over 900,000 people living with heart failure in the UK.

BHF Professor Michael Schneider and his team are working to develop drugs that could be given in the first few hours following a heart attack to minimise heart muscle death caused by the stress signals. These stress signals actually increase dramatically when the blood supply is restored so, although it is vital to resupply the heart with oxygen and nutrients by reopening the blocked coronary artery, additional treatments to counteract any 'reperfusion injury' have been sought for decades.

It's hoped the treatment would be developed into an injection that could be given as someone was being prepared to receive balloon angioplasty to open up the blocked coronary artery that caused their heart attack.

The treatment is also possibly important for towns and countries where there is limited access to rapid angioplasty.

The researchers made their discovery by studying heart samples from people with heart failure and then showed that MAP4K4 is activated in mice after a heart attack, and in heart cells and heart tissue subjected to stress chemicals in the laboratory. They found that if you raise the levels of MAP4K4, heart cells are made more sensitive to stress signals. If you block MAP4K4, the cells are protected and that is what their designed drug can achieve.

To mimic what might happen in a clinical setting, the mice were given the drug one hour after the blood flow to their hearts was restored. This showed that the drug could reduce heart damage in mice by around 60 per cent.

Notoriously, potential treatments from prior research into protection from heart muscle death have not proven effective in large clinical trials, but the team believe targeting this new protein, and testing their results in human heart tissue grown from stem cells before moving to trials in heart attack patients, could be the key to success in this area.

These successes have led to a family of potential new drugs being developed for heart attack, with the next steps including rigorous safety testing and a clinical trial, which could start as early as 2021-22.

This research was funded by the British Heart Foundation, the Medical Research Council and Wellcome.

BHF Professor Michael Schneider who led the research at the BHF Centre of Regenerative Medicine said:

"There are no existing therapies that directly address the problem of muscle cell death and this would be a revolution in the treatment of heart attacks.

"One reason why many heart drugs have failed in clinical trials may be that they have not been tested in human cells before the clinic. Using both human cells and animals allows us to be more confident about the molecules we take forward."

Professor Metin Avkiran, Associate Medical Director at the British Heart Foundation, which part-funded the research, said:

"Coronary heart disease is the major cause of heart attacks and it kills 180 people in the UK each day. Finding a drug that could limit the death of heart muscle during and after a heart attack, and stop the decline towards heart failure, has been a target of research for decades. But, despite a number of promising candidates in the past, we still have no drugs that can do this in routine clinical use.

"A unique strength of this study is their extensive testing of the drug in heart muscle cells grown from human stem cells. But further research is needed to refine and test drugs that can target MAP4K4 before we'll see them given to people who've had a heart attack."

This research was funded by the British Heart Foundation and Wellcome Trust. Cambridge medicinal chemistry firm Domainex partnered for the design and manufacture of the drugs tested.

Trevor Perrior from Domainex, who made the family of potential drugs said: "Our team were thrilled to work on this exciting new target discovered by Michael's team. There were several challenges that we had to solve in order to invent a series of potential drug compounds that were potent, selective, and - importantly - suitable for dosing intravenously, and it was enormously gratifying when we were successful and they worked just as Michael had predicted. We look forward to at least one of these compounds progressing towards the clinic for the benefit of patients."
-end-
To request interviews or for more information please call the BHF press office on 020 7554 0164 (07764 290 381 - out of hours) or email newsdesk@bhf.org.uk.

Notes to editors:

MAP4K4 mediates human cardiac muscle cell death: Preserving viability and function in human pluripotent stem cell-derived cardiomyocytes, Fiedler et al, published online, 07/03/2019, 16.00 GMT. Please contact the press office for an embargoed copy of the manuscript.

British Heart Foundation

Heart and circulatory diseases kill 1 in 4 people in the UK. For over 50 years we've pioneered research that's transformed the lives of people living with heart and circulatory conditions. Our work has been central to the discoveries of vital treatments that are changing the fight against heart disease. But so many people still need our help. From babies born with life-threatening heart problems to the many Mums, Dads and Grandparents who survive a heart attack and endure the daily battles of heart failure. Every pound raised, minute of your time and donation to our shops will help make a difference to people's lives.

For more information, visit bhf.org.uk

Wellcome

Wellcome exists to improve health by helping great ideas to thrive.

We support researchers, we take on big health challenges, we campaign for better science, and we help everyone get involved with science and health research.

We are a politically and financially independent foundation.

The Medical Research Council is at the forefront of scientific discovery to improve human health. Founded in 1913 to tackle tuberculosis, the MRC now invests taxpayers' money in some of the best medical research in the world across every area of health. Thirty-three MRC-funded researchers have won Nobel prizes in a wide range of disciplines, and MRC scientists have been behind such diverse discoveries as vitamins, the structure of DNA and the link between smoking and cancer, as well as achievements such as pioneering the use of randomised controlled trials, the invention of MRI scanning, and the development of a group of antibodies used in the making of some of the most successful drugs ever developed. Today, MRC-funded scientists tackle some of the greatest health problems facing humanity in the 21st century, from the rising tide of chronic diseases associated with ageing to the threats posed by rapidly mutating micro-organisms. The Medical Research Council is part of UK Research and Innovation. http://www.mrc.ukri.org

Domainex was established in 2001 as a spin-out from University College London, Birkbeck College, and the Institute of Cancer Research, Domainex Ltd. is a Cambridge-based, privately-owned company that provides integrated medicines research services to global pharmaceutical, biotechnology and academic partners. Its services cover a wide span of the drug research value chain, from disease target selection to pre-clinical candidate nomination. Domainex's services include recombinant protein expression and use of its proprietary technology platform, Combinatorial Domain Hunting to identify soluble protein fragments for structural biology and assay development. Hit finding activities encompass assay development and screening utilising its BioassayBuilder, FragmentBuilder and LeadBuilder platforms. The core of the service offering is undertaking multi-parameter medicinal chemistry optimisation of hits and leads with its 'every compound counts' approach, which can save up to 30% on the average industry time from target to candidate. For more information, visit http://www.domainex.co.uk.

For enquiries please contact Tom Mander, Chief Operating Officer, at tom.mander@domainex.co.uk

British Heart Foundation

Related Stem Cells Articles:

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.