Nav: Home

Researchers discover a new mechanism used by bacteria to evade antibiotics

March 07, 2019

As bacteria continue to demonstrate powerful resilience to antibiotic treatments--posing a rising public health crisis involving a variety of infections--scientists continue to seek a better understanding of bacterial defenses against antibiotics in an effort to develop new treatments.

Now, researchers at the University of California San Diego who combine experiments and mathematical modeling have discovered an unexpected mechanism that allows bacteria to survive antibiotics.

As described in the March 7 early online release of the journal Cell, Dong-yeon Lee, Maja Bialecka-Fornal and Gürol Süel of UC San Diego's Division of Biological Sciences, along with Leticia Galera-Laporta of the Universitat Pompeu Fabra (Spain), and colleagues discovered that bacteria defend themselves against antibiotics by controlling the uptake of alkaline metal ions. When under attack by antibiotics, bacteria were found to modulate magnesium ion uptake in order to stabilize their ribosomes--the fundamental molecular machines of life that translate genes into proteins--as a survival technique.

"We have found an unexpected new mechanism that actively growing bacteria utilize to become resilient against antibiotics," said Süel, a professor of molecular biology. "With this discovery we can now explore new ways to combat infections that we couldn't have thought of before."

The researchers investigated the relationship between ribosome activity and the electrochemical flux of ions across cell membranes. This membrane potential and ribosomes are among the most ancient and fundamental processes that operate in all living cells, from bacteria to humans. The scientists identified a distinct connection that "reveals how these ancient and fundamental cellular processes that are essential for life are interacting with each other," said Süel.

The new findings lay the scientific groundwork for new ways to counteract antibiotic resistance.

"Antibiotic resistance is a major public threat to our health," said Süel. "The number of drugs coming onto the market is not keeping up with the ability of bacteria to cope with those drugs."

Süel believes scientists may be able to boost the potency of existing antibiotic drugs by manipulating the ability of bacteria to take up magnesium, rather than having to develop completely new drugs. The potency of certain classes of antibiotics that are used to treat serious infections might be greatly improved by restricting how bacteria take up magnesium, thus interfering with bacteria's ability to use charged magnesium ions in defenses against antibiotics.
-end-
Coauthors of the paper include and Jordi Garcia-Ojalvo of the Universitat Pompeu Fabra; and Eun Chae Moon, Zhouxin Shen and Steven Briggs of UC San Diego's Division of Biological Sciences.

Süel is associate director of the San Diego Center for Systems Biology, which advances the discipline and application of systems biology in the greater San Diego research community, as well as a member of UC San Diego's Center for Microbiome Innovation, which leverages the university's strengths in several disciplines to coordinate and accelerate microbiome research. He is also a Howard Hughes Medical Institute Faculty Scholar.

University of California - San Diego

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".