Nav: Home

'Meta-mirror' reflects sound waves in any direction

March 07, 2019

DURHAM, N.C. -- Researchers at Duke University and Aalto University (Finland) have constructed a "meta-mirror" device capable of perfectly reflecting sound waves in any direction. The proof-of-principle demonstration is analogous to looking directly into a mirror and only seeing the person next to you instead of your own face.

The research appeared online on February 15 in the journal Science Advances.

"When you look into an everyday mirror, the light follows the Law of Reflection: the light must bounce off of it at the same angle that it came in at," said Junfei Li, a doctoral student in electrical and computer engineering at Duke University. The same rules generally apply to sound, but "we wanted to see if we could instead send a wave off in a different direction."

To break the law of reflection with sound waves, the researchers had to engineer a device that could precisely control amplitude (loudness) and speed throughout the entire wave, which is even more difficult than it sounds.

"One way we could achieve this is by magically launching a precisely controlled sound wave that 'strikes' the incoming sound wave like balls on a pool table," said Li. "But trying to do that would cause so much trouble that it's not a practical idea."

Instead of resorting to magic, Li and his colleagues turned to metamaterials -- artificial materials that manipulate waves like light and sound through their structure rather than their chemistry. For example, while the particular metamaterial that the researchers designed is made out of plastic, it's not the properties of the plastic that are important; it's the shapes of the device's features that allow it to steer sound waves in any direction.

The surface of the metamaterial looks much like a wave itself, etched with a series of channels of various depths. Those depths are engineered to precisely control the speed at which the sound wave reflects off various points of the meta-mirror. Their wave-like positioning controls the sound wave's amplitude.

"Because a soundwave carries energy, you have to give it a kick to redirect it," said Steve Cummer, professor of electrical and computer engineering at Duke. "But to do this perfectly, you either have to actively redistribute the energy along the surface of the meta-mirror, which isn't feasible, or you have to cleverly choose a shape where the energy distribution ends up being the same everywhere."

As a sound wave hits the meta-mirror, it reflects off of its curved surfaces and interferes with itself. Between the meta-mirror's shape and the depth of its channels, this interference pattern results in the sound wave reflecting in a desired direction without any of its energy being absorbed or scattered in an unwanted direction.

In the proof-of-concept demonstration, the metamaterial device takes a soundwave traveling directly toward it at 3,000 Hertz, a very high pitch not dissimilar to getting a "ringing in your ears," and perfectly reflects it at an angle of 70 degrees.

While the prototype device is specifically tailored to one frequency and angle of reflection, the researchers plan to pursue a dynamic device that could change shape to reflect different frequencies in different directions. They also plan to work on similar devices for underwater acoustics applications.

A similar device could also be created to control light waves, though its features would have to be engineered on a much smaller scale, because light wavelengths are shorter. Such a device would not only be able to reflect light in different directions, however, it could also split a single wave into two arbitrary directions.

"Not only did we figure out a way to design highly efficient metasurfaces, we can also adapt the design for different functionalities," said Ana Díaz-Rubio, a postdoctoral researcher at Aalto University who led the work on the project's underlying theory. "These metasurfaces are a versatile platform for arbitrary control of reflection."
-end-
This work was supported by the Academy of Finland and by a Multidisciplinary University Research Initiative grant from the Office of Naval Research (N00014-13-1-0631).

"Power flow-conformal metamirrors for engineering wave reflections." Ana Díaz-Rubio, Junfei Li, Chen Shen, Steven A. Cummer and Sergei A. Tretyakov. Science Advances, 2019. DOI: 10.1126/sciadv.aau7288

Duke University

Related Sound Waves Articles:

Sound waves direct particles to self-assemble, self-heal
Berkeley Lab scientists have demonstrated how floating particles will assemble and synchronize in response to acoustic waves.
Laser, sound waves provide live views of organs in action
Biomedical engineers are now able to take a live, holistic look at the inner workings of a small animal with enough resolution to see active organs, flowing blood, circulating melanoma cells and firing neural networks.
Sound waves boost older adult' memory, deep sleep
Gentle sound stimulation -- such as the rush of a waterfall -- synchronized to the rhythm of brain waves significantly enhanced deep sleep in older adults and tripled their ability to recall words, reports a new study.
Towards mastering terahertz waves?
Terahertz waves allow for the detection of materials that are undetectable at other frequencies.
Sound waves create whirlpools to round up tiny signs of disease
Mechanical engineers at Duke University have demonstrated a tiny whirlpool that can concentrate nanoparticles using nothing but sound.
The sound of quantum vacuum
Quantum mechanics dictates sensitivity limits in the measurements of displacement, velocity and acceleration.
The sound of a healthy reef
A new study from the Woods Hole Oceanographic Institution (WHOI) will help researchers understand the ways that marine animal larvae use sound as a cue to settle on coral reefs.
Knots in chaotic waves
New research, using computer models of wave chaos, has shown that three-dimensional tangled vortex filaments can in fact be knotted in many highly complex ways.
How to sound the alarm
A group of risk experts is proposing a new framework and research agenda that they believe will support the most effective public warnings when a hurricane, wildfire, toxic chemical spill or any other environmental hazard threatens safety.
Sound waves may hold potential to treat twin pregnancy complications
The early-stage feasibility study involving sheep suggests High Intensity Focused Ultrasound -- a technique already used for treating some cancers -- could help a condition called Twin-Twin Transfusion Syndrome.

Related Sound Waves Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".