Nav: Home

'Meta-mirror' reflects sound waves in any direction

March 07, 2019

DURHAM, N.C. -- Researchers at Duke University and Aalto University (Finland) have constructed a "meta-mirror" device capable of perfectly reflecting sound waves in any direction. The proof-of-principle demonstration is analogous to looking directly into a mirror and only seeing the person next to you instead of your own face.

The research appeared online on February 15 in the journal Science Advances.

"When you look into an everyday mirror, the light follows the Law of Reflection: the light must bounce off of it at the same angle that it came in at," said Junfei Li, a doctoral student in electrical and computer engineering at Duke University. The same rules generally apply to sound, but "we wanted to see if we could instead send a wave off in a different direction."

To break the law of reflection with sound waves, the researchers had to engineer a device that could precisely control amplitude (loudness) and speed throughout the entire wave, which is even more difficult than it sounds.

"One way we could achieve this is by magically launching a precisely controlled sound wave that 'strikes' the incoming sound wave like balls on a pool table," said Li. "But trying to do that would cause so much trouble that it's not a practical idea."

Instead of resorting to magic, Li and his colleagues turned to metamaterials -- artificial materials that manipulate waves like light and sound through their structure rather than their chemistry. For example, while the particular metamaterial that the researchers designed is made out of plastic, it's not the properties of the plastic that are important; it's the shapes of the device's features that allow it to steer sound waves in any direction.

The surface of the metamaterial looks much like a wave itself, etched with a series of channels of various depths. Those depths are engineered to precisely control the speed at which the sound wave reflects off various points of the meta-mirror. Their wave-like positioning controls the sound wave's amplitude.

"Because a soundwave carries energy, you have to give it a kick to redirect it," said Steve Cummer, professor of electrical and computer engineering at Duke. "But to do this perfectly, you either have to actively redistribute the energy along the surface of the meta-mirror, which isn't feasible, or you have to cleverly choose a shape where the energy distribution ends up being the same everywhere."

As a sound wave hits the meta-mirror, it reflects off of its curved surfaces and interferes with itself. Between the meta-mirror's shape and the depth of its channels, this interference pattern results in the sound wave reflecting in a desired direction without any of its energy being absorbed or scattered in an unwanted direction.

In the proof-of-concept demonstration, the metamaterial device takes a soundwave traveling directly toward it at 3,000 Hertz, a very high pitch not dissimilar to getting a "ringing in your ears," and perfectly reflects it at an angle of 70 degrees.

While the prototype device is specifically tailored to one frequency and angle of reflection, the researchers plan to pursue a dynamic device that could change shape to reflect different frequencies in different directions. They also plan to work on similar devices for underwater acoustics applications.

A similar device could also be created to control light waves, though its features would have to be engineered on a much smaller scale, because light wavelengths are shorter. Such a device would not only be able to reflect light in different directions, however, it could also split a single wave into two arbitrary directions.

"Not only did we figure out a way to design highly efficient metasurfaces, we can also adapt the design for different functionalities," said Ana Díaz-Rubio, a postdoctoral researcher at Aalto University who led the work on the project's underlying theory. "These metasurfaces are a versatile platform for arbitrary control of reflection."
-end-
This work was supported by the Academy of Finland and by a Multidisciplinary University Research Initiative grant from the Office of Naval Research (N00014-13-1-0631).

"Power flow-conformal metamirrors for engineering wave reflections." Ana Díaz-Rubio, Junfei Li, Chen Shen, Steven A. Cummer and Sergei A. Tretyakov. Science Advances, 2019. DOI: 10.1126/sciadv.aau7288

Duke University

Related Sound Waves Articles:

A sound treatment
University of Utah biomedical engineering assistant professor Jan Kubanek has discovered that sound waves of high frequency (ultrasound) can be emitted into a patient's brain to alter his or her state.
Light, sound, action: Extending the life of acoustic waves on microchips
Data centres and digital information processors are reaching their capacity limits and producing heat.
Cooling magnets with sound
Today, most quantum experiments are carried out with the help of light, including those in nanomechanics, where tiny objects are cooled with electromagnetic waves to such an extent that they reveal quantum properties.
Fish scattering sound waves has impact on aquaculture
Fisheries acoustics have been studied for over 40 years to assess biomass and optimize aquaculture applications, and researchers in France have examined the phenomenon of how fish scatter acoustic waves in a dense school of fish contained in an open-sea cage.
Using sound waves to remotely target drugs to tumors
The lack of a clinically viable method to track and direct cancer drugs to tumors is a big problem for targeted therapeutics.
Sound waves bypass visual limitations to recognize human activity
Video cameras continue to gain widespread use, but there are privacy and environmental limitations in how well they work.
It's a one-way street for sound waves in this new technology
Imagine being able to hear people whispering in the next room, while the raucous party in your own room is inaudible to the whisperers.
'Meta-mirror' reflects sound waves in any direction
Researchers at Duke University have constructed a 'meta-mirror' device capable of perfectly reflecting sound waves in any direction.
A study by the UC3M researches the limits of topological insulators using sound waves
Research in which the Universidad Carlos III de Madrid (UC3M) is taking part analyses the future of topological insulators using sound waves, meaning materials that behave like acoustic insulators in their interior, but at the same time allow the movement of sound waves at their surface.
KU Leuven researchers use sound waves to prevent small chemical reactors from clogging up
Companies are keen to use miniature chemical reactors to make pharmaceuticals and fine chemicals, but are discouraged by their tendency to clog up.
More Sound Waves News and Sound Waves Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Biology Of Sex
Original broadcast date: May 8, 2020. Many of us were taught biological sex is a question of female or male, XX or XY ... but it's far more complicated. This hour, TED speakers explore what determines our sex. Guests on the show include artist Emily Quinn, journalist Molly Webster, neuroscientist Lisa Mosconi, and structural biologist Karissa Sanbonmatsu.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

The Wubi Effect
When we think of China today, we think of a technological superpower. From Huweai and 5G to TikTok and viral social media, China is stride for stride with the United States in the world of computing. However, China's technological renaissance almost didn't happen. And for one very basic reason: The Chinese language, with its 70,000 plus characters, couldn't fit on a keyboard.  Today, we tell the story of Professor Wang Yongmin, a hard headed computer programmer who solved this puzzle and laid the foundation for the China we know today. This episode was reported and produced by Simon Adler with reporting assistance from Yang Yang. Special thanks to Martin Howard. You can view his renowned collection of typewriters at: antiquetypewriters.com Support Radiolab today at Radiolab.org/donate.