Nav: Home

New graphene-based device is first step toward ultrasensitive biosensors

March 07, 2019

Researchers in the University of Minnesota College of Science and Engineering have developed a unique new device using the wonder material graphene that provides the first step toward ultrasensitive biosensors to detect diseases at the molecular level with near perfect efficiency.

Ultrasensitive biosensors for probing protein structures could greatly improve the depth of diagnosis for a wide variety of diseases extending to both humans and animals. These include Alzheimer's disease, Chronic Wasting Disease, and mad cow disease--disorders related to protein misfolding. Such biosensors could also lead to improved technologies for developing new pharmaceutical compounds.

The research is published in Nature Nanotechnology, a peer-reviewed scientific journal published by Nature Publishing Group.

"In order to detect and treat many diseases we need to detect protein molecules at very small amounts and understand their structure," said Sang-Hyun Oh, University of Minnesota electrical and computer engineering professor and lead researcher on the study. "Currently, there are many technical challenges with that process. We hope that our device using graphene and a unique manufacturing process will provide the fundamental research that can help overcome those challenges."

Graphene, a material made of a single layer of carbon atoms, was discovered more than a decade ago. It has enthralled researchers with its range of amazing properties that have found uses in many new applications, including creating better sensors for detecting diseases.

Significant attempts have been made to improve biosensors using graphene, but the challenge exists with its remarkable single atom thickness. This means it does not interact efficiently with light when shined through it. Light absorption and conversion to local electric fields is essential for detecting small amounts of molecules when diagnosing diseases. Previous research utilizing similar graphene nanostructures has only demonstrated a light absorption rate of less than 10 percent.

In this new study, University of Minnesota researchers combined graphene with nano-sized metal ribbons of gold. Using sticky tape and a high-tech nanofabrication technique developed at the University of Minnesota, called "template stripping," researchers were able to create an ultra-flat base layer surface for the graphene.

They then used the energy of light to generate a sloshing motion of electrons in the graphene, called plasmons, which can be thought to be like ripples or waves spreading through a "sea" of electrons. Similarly, these waves can build in intensity to giant "tidal waves" of local electric fields based on the researchers' clever design.

By shining light on the single-atom-thick graphene layer device, they were able to create a plasmon wave with unprecedented efficiency at a near-perfect 94 percent light absorption into "tidal waves" of electric field. When they inserted protein molecules between the graphene and metal ribbons, they were able to harness enough energy to view single layers of protein molecules.

"Our computer simulations showed that this novel approach would work, but we were still a little surprised when we achieved the 94 percent light absorption in real devices," said Oh, who holds the Sanford P. Bordeau Chair in Electrical Engineering at the University of Minnesota. "Realizing an ideal from a computer simulation has so many challenges. Everything has to be so high quality and atomically flat. The fact that we could obtain such good agreement between theory and experiment was quite surprising and exciting."
-end-
In addition to Oh, the research team included University of Minnesota electrical and computer engineering postdoctoral researchers In-Ho Lee (lead author) and Daehan Yoo, Professor Tony Low, and IBM Fellow Emeritus Dr. Phaedon Avouris.

This research was funded primarily by the National Science Foundation. The Institute for Mathematics and its Applications (IMA) at the University of Minnesota provided additional support. Device fabrication occurred at the Minnesota Nano Center at the University of Minnesota and electron microscopy measurements were performed at the University of Minnesota Characterization Facility.

To read the research paper entitled "Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy," visit the Nature Nanotechnology website.

University of Minnesota

Related Graphene Articles:

New chemical method could revolutionize graphene
University of Illinois at Chicago scientists have discovered a new chemical method that enables graphene to be incorporated into a wide range of applications while maintaining its ultra-fast electronics.
Searching beyond graphene for new wonder materials
Graphene, the two-dimensional, ultra lightweight and super-strong carbon film, has been hailed as a wonder material since its discovery in 2004.
New method of characterizing graphene
Scientists have developed a new method of characterizing graphene's properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials.
Chemically tailored graphene
Graphene is considered as one of the most promising new materials.
Beyond graphene: Advances make reduced graphene oxide electronics feasible
Researchers have developed a technique for converting positively charged (p-type) reduced graphene oxide (rGO) into negatively charged (n-type) rGO, creating a layered material that can be used to develop rGO-based transistors for use in electronic devices.
More Graphene News and Graphene Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.