Cleft lip and palate: Genes more important than thought?

March 08, 2009

Comparing 500,000 snippets of human DNA put scientists from the University of Bonn on the right track. A genetic variant on chromosome 8 occurs with significantly higher frequency in people with cleft lip and palate than in the control group. The results are to be published in the forthcoming issue of the journal Nature Genetics.

Cleft lips and palates are among the most frequent innate abnormalities. One in about 700 babies in Central Europe are affected. Children in particular suffer a lot from the deformity, even if the insulting and discriminating term 'harelip' has fortunately almost died out.

In the cleft lip and palate, different tissue processes of the face and mouth area do not fuse together or do so insufficiently. This results in a gap remaining between lip, jaw and sometimes the palate. It seems likely that several factors have to add up in order for clefts to form. Both environmental influences which have an impact on the child in the womb and genetic factors contribute to the deformity. However, the results of the scientists from Bonn could also point to genes playing a far more important role in the formation of clefts than was previously thought.

The long arm of chromosome 8

The human geneticists from the University of Bonn had examined the DNA of 460 persons with clefts. More than half of them were examined more closely. The scientists analysed more than 500,000 items of information from their DNA and then compared these with the genetic snippets of a control group. A specific area in the human genome caught the scientists' attention. 'This was a point on the long arm of chromosome 8, where the cleft group conspicuously often had a variant, far more frequently than people who had no abnormality,' Dr. Elisabeth Mangold, a lecturer from the Institute of Human Genetics at the University of Bonn, explains. This is a notable clue that a gene located in this region has something to do with the occurrence of clefts.

Good news for mothers of children affected

'Without this genetic factor on chromosome 8, the probability of a child in our population of getting clefts would be significantly less than 1 in 700,' Elisabeth Mangold points out. 'In effect, this is good news for all mothers of the children affected, who always thought, "I must have done something wrong while I was pregnant." You just can't help having the genes you have got.'

Further research now aims to show which gene exactly on chromosome 8 is responsible and how it works. 'We are currently looking for it,' Dr. Mangold explains. 'It could indeed be what is known as a regulatory element that controls other genes.' When the mechanisms of all the genes involved and the interplay with environmental factors are understood, the scientists can also say whether prophylaxis involving medication during pregnancy makes sense. There are currently several indications that taking particular vitamins during pregnancy can counteract deformities in embryos.
-end-
Please also feel free to listen to our podcast on www.uni-bonn.tv (only available on Monday March 9th)

University of Bonn

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.