New paper examines issues raised by Fukushima reactor accident

March 08, 2012

As the one-year anniversary of the Fukushima Daiichi reactor accident is marked on March 11, a new paper by Peter C. Burns, Henry Massman Professor of Civil Engineering and Geological Sciences at the University of Notre Dame and colleagues from the University of Michigan and the University of California, Davis, stresses that we need much more knowledge about how nuclear fuel interacts with the environment during and after an accident.

In the paper, which appears in the March 9 editions of the journal Science, Burns and Rodney C. Ewing of the University of Michigan and Alexandra Navrotsky of the University of California-Davis call for increased research to help develop predictive models for future nuclear accidents.

A nine-magnitude earthquake near Japan on March 11triggered a tsunami that wiped out coastal towns, shut roads, severed communications and claimed thousands of lives. It also cut off all electricity to the Fukushima Daiichi nuclear power station, setting the stage for a series of explosions which released large quantities of radioactive substances into the surrounding environment.

"Reactors are designed to high safety standards, but on the anniversary of the accidents in Fukushima we are reminded that the forces of nature can produce unlikely events that can overcome the safety margins built into the reactor designs," Burns said. "A reactor core meltdown releases radioactive material from the fuel. If containment systems fail, as they did at Fukushima, radioactive material is then released into the environment."

Burns, Ewing and Navrotsky point out in their paper that accurate fundamental models for the prediction of release rates of radionuclides from damaged fuel, especially in contact with water, after an accident are limited.

"At Fukushima, a large amount of radioactive material was released when seawater was pumped onto the reactor cores that later leaked into the ocean and groundwater," Burns said. "Little is known about how radioactive fuel in a reactor accident interacts with water and releases radioactive material. This paper examines what is known, points to serious shortcomings in our understanding, and proposes a course of research to address the problem."

Although some of the needed research can be conducted using simulated core-melt events with fuel analogs that contain nonradioactive isotopes, Burns and his colleagues point out that some of the studies will need to be done with radioactive materials. Although such studies are both difficult and expensive, Burns points out that they are essential to reduce the risk associated with increasing reliance on nuclear energy.

"Nuclear power reactors, of which there are currently 440 operating worldwide, provide about 16 percent of the world's electricity," he said. "They also produce extremely radioactive used fuel.

"A growing reliance on nuclear energy in the world over the coming decades will make serious reactor accidents more likely, although they will remain rare events. To better protect humanity when accidents do occur, we need a much improved understanding of how water interacts with damaged fuel, and how the radioactive material is released and transported in water."
-end-
The research described in the Science paper was conducted under the auspicious of Notre Dame's Energy Frontier Research Center (EFRC), a U.S. Department of Energy-funded initiative established to pursue advanced scientific research on energy. Burns serves as director of the center.

University of Notre Dame

Related Water Articles from Brightsurf:

Transport of water to mars' upper atmosphere dominates planet's water loss to space
Instead of its scarce atmospheric water being confined in Mars' lower atmosphere, a new study finds evidence that water on Mars is directly transported to the upper atmosphere, where it is converted to atomic hydrogen that escapes to space.

Water striders learn from experience how to jump up safely from water surface
Water striders jump upwards from the water surface without breaking it.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Something in the water
Between 2015 and 2016, Brazil suffered from an epidemic outbreak of the Zika virus, whose infections occurred throughout the country states.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.

Water, water everywhere -- and it's weirder than you think
Researchers at The University of Tokyo show that liquid water has 2 distinct molecular arrangements: tetrahedral and non-tetrahedral.

What's in your water?
Mixing drinking water with chlorine, the United States' most common method of disinfecting drinking water, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.

How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.

Read More: Water News and Water Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.