Nav: Home

Nature: KIT simulation analyzes cosmic rays

March 08, 2016

When cosmic rays hit the Earth's atmosphere, their high-energy primary particles generate an 'air shower' of secondary particles. These cascades of particles provide information on the physical properties of the primary particles, the origin of which has been studied by astrophysicists for generations. Measurements of LOFAR (Low Frequency Array), the biggest radio telescope worldwide, provide new findings on the mass and potential sources of the particles, as is now published in the journal Nature. KIT is one of the project partners. DOI: 10.1038/nature16976

"After ten years of research, we now understand the radio signals of these particle cascades so well that we can draw conclusions with respect to the properties of the primary particles using detailed measurements and their comparison to our simulation code," Tim Huege of the Institute of Nuclear Physics of KIT reports. Recent results found a surprisingly high number of light particles, protons and helium nuclei, at energies of 10 to the power of 17 to 10 to the power of 17,5 electron volts. "This gives rise to questions," Huege says.

In this relatively high energy range, preferably heavy particles have been found so far, which may arise from supernova remnants. This might suggest that the light particles detected now are of extragalactic origin or -- the more exciting option -- that a particularly energy-rich source exists in our galaxy. Experts already know that particle flux from galactic sources stops somewhere and cosmic rays of highest energies can be produced in the most energetic extragalactic sources only. Yet, it is still unknown in which energy ranges this transition takes place. Recent analysis of the LOFAR data has now opened up a new perspective on this question. Such research would not be possible without the simulation code CoREAS (CORSIKA-based Radio Emission from Air Showers) developed at KIT. "With this code, we evaluate the measurements of the radio antennas and interpret the signals precisely," Huege explains. Up to 100 simulations may be required to exactly classify a signal. "CoREAS is used by astroparticle physicists worldwide to interpret radio emissions from air showers."

Several hundred LOFAR antennas in Exloo, the Netherlands, measure the arrival direction, energy, and mass of the particles. For the precise determination of the mass, the depth of penetration of the air showers into the Earth's atmosphere, briefly called Xmax, is needed. It can be determined reliably and continuously by simulations only. "Light particles penetrate deeper than heavy ones," Huege explains. "The Xmax value, hence, indicates particle composition."

CoREAS is the result of ten years of development work at KIT. This simulation code is implanted in the CORSIKA code (Cosmic Ray Simulation for KASCADE) that was used in particular for KIT's KASCADE-Grande particle detector experiment and the LOPES radio prototype experiment operated until 2013. Within the framework of the Pierre Auger Observatory, an international astrophysical large-scale experiment in Argentina with major contributions by KIT and other German universities, CORSIKA is being further developed and continuously complemented with new interaction models. CORSIKA was launched in 1989 and has been cited by nearly 700 peer-reviewed scientific publications of air shower experiments worldwide.
-end-
'A large light-mass component of cosmic rays at 1017-1017.5 electronvolts from radio observations', S. Buitink et al., DOI: 10.1038/nature16976

CORSIKA -- An Airshower Simulation Program http://www.ikp.kit.edu/corsika/index.php

KIT Elementary Particle and Astroparticle Physics Center (KCETA) http://www.kceta.kit.edu/english/

For further information, please contact: Kosta Schinarakis, PKM -- Science Scout, Phone: 49-721-608-41956, Fax: 49-721-608-43658, E-mail: schinarakis@kit.edu

Karlsruhe Institute of Technology (KIT) pools its three core tasks of research, higher education, and innovation in a mission. With about 9,300 employees and 25,000 students, KIT is one of the big institutions of research and higher education in natural sciences and engineering in Europe.

KIT -- The Research University in the Helmholtz Association

Since 2010, the KIT has been certified as a family-friendly university.

Karlsruher Institut für Technologie (KIT)

Related Cosmic Rays Articles:

Chest X-rays contain information that can be harvested with AI
The most frequently performed imaging exam in medicine, the chest X-ray, holds 'hidden' prognostic information that can be harvested with artificial intelligence (AI).
Hundreds of sharks and rays tangled in plastic
Hundreds of sharks and rays have become tangled in plastic waste in the world's oceans, new research shows.
X and gamma rays --Even more powerful
International group of researchers including scientists from Skoltech have invented a new method for the generation of intense X and gamma-ray radiation based on Nonlinear Compton Scattering.
Electron-gun simulations explain the mechanisms of high-energy cosmic rays
A new study published in EPJ D provides a rudimentary model for simulating cosmic rays' collisions with planets by looking at the model of electrons detached from a negative ion using photons.
Illuminating nanoparticle growth with X-rays
Ultrabright X-rays at NSLS-II reveal key details of catalyst growth for more efficient hydrogen fuel cells.
Telescope maps cosmic rays in large and small magellanic clouds
A radio telescope in outback Western Australia has been used to observe radiation from cosmic rays in two neighbouring galaxies, showing areas of star formation and echoes of past supernovae.
Balloon-borne telescope looks for cosmic gamma rays
Cosmic gamma rays can provide us with important insights into the high-energy phenomena in our universe.
Neutrino observation points to one source of high-energy cosmic rays
Observations made by researchers using a National Science Foundation (NSF) detector at the South Pole and verified by ground- and space-based telescopes have produced the first evidence of one source of high-energy cosmic neutrinos.
NASA's NuSTAR mission proves superstar Eta Carinae shoots cosmic rays
NASA's NuSTAR space telescope shows that Eta Carinae, the most luminous and massive stellar system within 10,000 light-years, is accelerating cosmic rays.
Cosmic x-rays may provide clues to the nature of dark matter
Researchers at Johannes Gutenberg University Mainz in Germany have presented a novel theory of dark matter, which implies that dark matter particles may be very different from what is normally assumed.
More Cosmic Rays News and Cosmic Rays Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.