Nav: Home

Nature: KIT simulation analyzes cosmic rays

March 08, 2016

When cosmic rays hit the Earth's atmosphere, their high-energy primary particles generate an 'air shower' of secondary particles. These cascades of particles provide information on the physical properties of the primary particles, the origin of which has been studied by astrophysicists for generations. Measurements of LOFAR (Low Frequency Array), the biggest radio telescope worldwide, provide new findings on the mass and potential sources of the particles, as is now published in the journal Nature. KIT is one of the project partners. DOI: 10.1038/nature16976

"After ten years of research, we now understand the radio signals of these particle cascades so well that we can draw conclusions with respect to the properties of the primary particles using detailed measurements and their comparison to our simulation code," Tim Huege of the Institute of Nuclear Physics of KIT reports. Recent results found a surprisingly high number of light particles, protons and helium nuclei, at energies of 10 to the power of 17 to 10 to the power of 17,5 electron volts. "This gives rise to questions," Huege says.

In this relatively high energy range, preferably heavy particles have been found so far, which may arise from supernova remnants. This might suggest that the light particles detected now are of extragalactic origin or -- the more exciting option -- that a particularly energy-rich source exists in our galaxy. Experts already know that particle flux from galactic sources stops somewhere and cosmic rays of highest energies can be produced in the most energetic extragalactic sources only. Yet, it is still unknown in which energy ranges this transition takes place. Recent analysis of the LOFAR data has now opened up a new perspective on this question. Such research would not be possible without the simulation code CoREAS (CORSIKA-based Radio Emission from Air Showers) developed at KIT. "With this code, we evaluate the measurements of the radio antennas and interpret the signals precisely," Huege explains. Up to 100 simulations may be required to exactly classify a signal. "CoREAS is used by astroparticle physicists worldwide to interpret radio emissions from air showers."

Several hundred LOFAR antennas in Exloo, the Netherlands, measure the arrival direction, energy, and mass of the particles. For the precise determination of the mass, the depth of penetration of the air showers into the Earth's atmosphere, briefly called Xmax, is needed. It can be determined reliably and continuously by simulations only. "Light particles penetrate deeper than heavy ones," Huege explains. "The Xmax value, hence, indicates particle composition."

CoREAS is the result of ten years of development work at KIT. This simulation code is implanted in the CORSIKA code (Cosmic Ray Simulation for KASCADE) that was used in particular for KIT's KASCADE-Grande particle detector experiment and the LOPES radio prototype experiment operated until 2013. Within the framework of the Pierre Auger Observatory, an international astrophysical large-scale experiment in Argentina with major contributions by KIT and other German universities, CORSIKA is being further developed and continuously complemented with new interaction models. CORSIKA was launched in 1989 and has been cited by nearly 700 peer-reviewed scientific publications of air shower experiments worldwide.
'A large light-mass component of cosmic rays at 1017-1017.5 electronvolts from radio observations', S. Buitink et al., DOI: 10.1038/nature16976

CORSIKA -- An Airshower Simulation Program

KIT Elementary Particle and Astroparticle Physics Center (KCETA)

For further information, please contact: Kosta Schinarakis, PKM -- Science Scout, Phone: 49-721-608-41956, Fax: 49-721-608-43658, E-mail:

Karlsruhe Institute of Technology (KIT) pools its three core tasks of research, higher education, and innovation in a mission. With about 9,300 employees and 25,000 students, KIT is one of the big institutions of research and higher education in natural sciences and engineering in Europe.

KIT -- The Research University in the Helmholtz Association

Since 2010, the KIT has been certified as a family-friendly university.

Karlsruher Institut für Technologie (KIT)

Related Cosmic Rays Articles:

Study: Collateral damage from cosmic rays increases cancer risks for Mars astronauts
The cancer risk for a human mission to Mars has effectively doubled following a UNLV study predicting a dramatic increase in the disease for astronauts traveling to the red planet or on long-term missions outside the protection of Earth's magnetic field.
Physicists leapfrog accelerators with ultrahigh energy cosmic rays
An international team of physicists has developed a pioneering approach to using Ultrahigh Energy Cosmic Rays (UHECRs) -- the highest energy particles in nature since the Big Bang -- to study particle interactions far beyond the reach of human-made accelerators.
Chorus of black holes radiates X-rays
The NuSTAR mission is identifying which black holes erupt with the highest-energy X-rays.
NASA instrument to use X-rays to map an asteroid
NASA's OSIRIS-REx spacecraft will launch September 2016 and travel to the near-Earth asteroid Bennu to harvest a sample of surface material and return it to Earth for study.
Microscopic 'clocks' time distance to source of galactic cosmic rays
Most of the galactic cosmic rays reaching Earth come from nearby clusters of massive stars, according to new observations from NASA's ACE spacecraft.
New use for X-rays: A radar gun for unruly atoms
Using coherent X-rays, a new technique has been discovered for sensing motion and velocity of small groups of atoms.
Nature: KIT simulation analyzes cosmic rays
When cosmic rays hit the Earth's atmosphere, their high-energy primary particles generate an 'air shower' of secondary particles.
How skates and rays got their wings
The evolution of the striking, wing-like pectoral fins of skates and rays relied on repurposed genes, according to new research by scientists from the University of Chicago.
Study finds metal foams capable of shielding X-rays, gamma rays, neutron radiation
Research shows lightweight composite metal foams are effective at blocking X-rays, gamma rays and neutron radiation, and are capable of absorbing the energy of high impact collisions.
Using muons from cosmic rays to find fraying infrastructure
Seeking a better way to identify faulty energy infrastructure before it fails, researchers at Los Alamos National Laboratory are using subatomic particles called muons to analyze the thickness of concrete slabs and metal pipes.

Related Cosmic Rays Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...