Nav: Home

Syntax is not unique to human language

March 08, 2016

Human communication is powered by rules for combining words to generate novel meanings. Such syntactical rules have long been assumed to be unique humans. A new study, published in Nature Communications, show that Japanese great tits combine their calls using specific rules to communicate important compound messages. These results demonstrate that syntax is not unique to humans. Instead, syntax may be a general adaptation to social and behavioural complexity in communication systems.

Language is one of humans' most important defining characteristics. It allows us to generate innumerable expressions from a finite number of vocal elements and meanings, and underlies the evolution of other characteristic human behaviours, such as art and technology. The power of language lies in combining meaningless sounds into words that in turn are combined into phrases. Research on the communication systems of non-human primates and birds suggests that the ability to combine meaningless vocal elements has evolved repeatedly, but the evolution of syntax (i.e. combining different words to form more complex expressions) was so far considered to be unique to human language.

A recent study by researchers from Japan, Germany and Sweden challenges this view, demonstrating that the Japanese great tit, known for its diverse vocal repertoire, have evolved syntax. This small bird species experiences a number of threats, and in response to predators, they give a variety of different calls. These calls can be used either alone or in combination with other calls. Using playback experiments, Dr. Suzuki and colleagues could demonstrate that ABC calls signifies "scan for danger", for example when encountering a perched predator, whereas D calls signify "come here", for example when discovering a new food source, or to recruit the partner to their nest box. Tits often combine these two calls into ABC-D calls such as when approaching and deterring predators. When these two calls are played together in the naturally occurring order (ABC-D), then birds both approach and scan for danger. However, when the call ordering is artificially reversed (D-ABC), birds do not respond.

'This study demonstrates that syntax is not unique to human language, but also evolved independently in birds. Understanding why syntax has evolved in tits can give insights into its evolution in humans', says David Wheatcroft, post doc at the Department of Ecology and Genetics at Uppsala University and co-author of the study.

Japanese great tits use different calls to coordinate a variety of social interactions, each of which requires specific behavioural responses. Syntax provides rules for combining the elements from a small vocabulary to generate novel meanings that can be readily recognized. These rules may be an adaptation to social and behavioural complexity in communication systems, such as in human language.
-end-
For more information, please contact David Wheatcroft, tel: 4618-471 6495, 46 72-2238327, e-post: David.Wheatcroft@ebc.uu.se

Toshitaka Suzuki, David Wheatcroft, and Michael Griesser (2016) Experimental evidence for compositional syntax in bird calls, Nature Communications, DOI: 10.1038/ncomms10986

Uppsala University

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".