Nav: Home

Atomic resolution of muscle contraction

March 08, 2017

At the molecular level, muscle contraction is defined by myosin molecules pulling actin filaments. New electron cryomicroscopy images with unprecedented resolution taken by researchers at Osaka University reveal unexpectedly large conformational changes in the myosin molecule during the pull. These findings, which can be seen in Nature Communications, provide new insights into how myosin generates force and a paradigm for the construction of nanomachines.

To biophysicists like Keiichi Namba, professor at Osaka University, the ability of tiny molecules to generate large amounts of force seen in muscle make myosin an engineering marvel.

"Myosin and actin are nanomachines that convert the chemical energy of ATP hydrolysis into mechanical work" he says.

Myosin converts this energy by hydrolyzing ATP molecules into movement along an actin filament. The hydrolysis involves a number of conformational changes in myosin. These changes have been imaged using electron microscopy, but, notes Takashii Fujii, specially appointed assistant professor, "there were no atomic images of ATP hydrolysis when myosin is interacting with actin," which would more accurately represent the changes myosin takes during muscle contraction.

Indeed, Fujii and Namba used electron cryomicroscopy to acquire images at 5.2 Å resolution to show a previously unobserved conformational change in the myosin molecule when it interacts with actin. The two scientists hypothesized that this conformation could explain why muscle myosin has far faster kinetics than other myosin in the body.

The images also give clues into how myosin moves along actin. The binding of ATP forces a rotation within the myosin molecule that reduces the number of bonds between it and actin. This weakly bound structure with a highly asymmetric bond distribution allows myosin to detach from actin and rebind preferentially in one direction, thus pulling the actin filament. Detachment toward the opposite direction would require a larger number of bonds to be broken at once, preventing detachment. This picture provides a new perspective on how myosin functions.

"This is a very unique image, because the weak binding state is unstable and it lifetime is short," noted Namba. He believes that this conformational state could be the reason why experiments on ATP hydrolysis by myosin without actin do not explain muscle contraction well.

"There is a structural asymmetry in the system", he said. "This could explain why myosin moves over much longer distance per ATP hydrolysis than expected."

Besides providing new molecular details on muscle contraction, Namba expects the structural information gained by this work could be used to make artificial nanomachines. "We are studying nature's nanomachines to build man-made ones," he said.
-end-


Osaka University

Related Myosin Articles:

Compound may play role in halting panceatic cancer
In early test tube and mouse studies, investigators at Johns Hopkins Medicine and the Johns Hopkins Kimmel Cancer Center have found that nonmuscle myosin IIC (MYH14), a protein activated in response to mechanical stress, helps promote metastatic behavior in pancreatic cancer cells, and that the compound 4-hydroxyacetophenone (4-HAP), known to stiffen myosin IIC-containing cells, can send it into overdrive, overwhelming the ability of cells to invade nearby tissue.
Physics of life: Motor proteins and membrane dynamics
Motility is an essential property of many cell types, and is driven by molecular motors.
Multiple mechanisms behind disease associated with unexpected heart attacks
An examination of three mutations associated with hypertrophic cardiomyopathy -- a disease best known for revealing itself as an unexpected, fatal heart attack during strenuous exercise -- found separate mechanisms at work at the molecular level.
Skin cancer can spread in mice by hijacking the immune system
Scientists have uncovered molecules released by invasive skin cancer that reprogram healthy immune cells to help the cancer to spread.
The origins of asymmetry: A protein that makes you do the twist
Asymmetry plays a major role in biology at every scale: think of DNA spirals, the fact that the human heart is positioned on the left, our preference to use our left or right hand.
Why heart contractions are weaker in those with hypertrophic cardiomyopathy
Familial hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease in the US and affects an estimated 1 in 500 people around the world.
New findings on the muscle disease Laing early-onset distal myopathy
New avenues are now being opened for future treatment of Laing distal myopathy, a rare disorder that causes muscles in the feet, hands and elsewhere to atrophy.
Healthy red blood cells owe their shape to muscle-like structures
The findings could shed light on sickle cell diseases and other disorders where red blood cells are deformed.
Brown fat flexes its muscle to burn energy
Scientists at the University of California, Berkeley, have discovered that the same kind of fat cells that help newborn babies regulate their body temperature could be a target for weight-loss drugs in adults.
A new role for an old protein in breast cancer
A new role for an old protein in breast cancer Potential new treatments may result from research carried out by the University of Kent that has found a new interaction between one of the proteins in our bodies and hormones in breast cancer cells.
More Myosin News and Myosin Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.