Nav: Home

Scientists create new form of matter, a time crystal

March 08, 2017

Salt, snowflakes and diamonds are all crystals, meaning their atoms are arranged in 3-D patterns that repeat. Today scientists are reporting in the journal Nature on the creation of a phase of matter, dubbed a time crystal, in which atoms move in a pattern that repeats in time rather than in space.

The atoms in a time crystal never settle down into what's known as thermal equilibrium, a state in which they all have the same amount of heat. It's one of the first examples of a broad new class of matter, called nonequilibrium phases, that have been predicted but until now have remained out of reach. Like explorers stepping onto an uncharted continent, physicists are eager to explore this exotic new realm.

"This opens the door to a whole new world of nonequilibrium phases," says Andrew Potter, an assistant professor of physics at The University of Texas at Austin. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory. Hopefully, this is just the first example of these, with many more to come."

Some of these nonequilibrium phases of matter may prove useful for storing or transferring information in quantum computers.

Potter is part of the team led by researchers at the University of Maryland who successfully created the first time crystal from ions, or electrically charged atoms, of the element ytterbium. By applying just the right electrical field, the researchers levitated 10 of these ions above a surface like a magician's assistant. Next, they whacked the atoms with a laser pulse, causing them to flip head over heels. Then they hit them again and again in a regular rhythm. That set up a pattern of flips that repeated in time.

Crucially, Potter noted, the pattern of atom flips repeated only half as fast as the laser pulses. This would be like pounding on a bunch of piano keys twice a second and notes coming out only once a second. This weird quantum behavior was a signature that he and his colleagues predicted, and helped confirm that the result was indeed a time crystal.

The team also consists of researchers at the National Institute of Standards and Technology, the University of California, Berkeley and Harvard University, in addition to the University of Maryland and UT Austin.

Frank Wilczek, a Nobel Prize-winning physicist at the Massachusetts Institute of Technology, was teaching a class about crystals in 2012 when he wondered whether a phase of matter could be created such that its atoms move in a pattern that repeats in time, rather than just in space.

Potter and his colleague Norman Yao at UC Berkeley created a recipe for building such a time crystal and developed ways to confirm that, once you had built such a crystal, it was in fact the real deal. That theoretical work was announced publically last August and then published in January in the journal Physical Review Letters.

A team led by Chris Monroe of the University of Maryland in College Park built a time crystal, and Potter and Yao helped confirm that it indeed had the properties they predicted. The team announced that breakthrough--constructing a working time crystal--last September and is publishing the full, peer-reviewed description today in Nature.

A team led by Mikhail Lukin at Harvard University created a second time crystal a month after the first team, in that case, from a diamond.
This research was supported by the U.S. Army Research Office, Air Force Office of Scientific Research, Intelligence Advanced Research Projects Activity and the Simons Foundation.

University of Texas at Austin

Related Crystals Articles:

New photonic liquid crystals could lead to next-generation displays
A new technique to change the structure of liquid crystals could lead to the development of fast-responding liquid crystals suitable for next generation displays -- 3D, augmented and virtual reality -- and advanced photonic applications such as mirrorless lasers, bio-sensors and fast/slow light generation, according to an international team of researchers from Penn State, the Air Force Research Laboratory and the National Sun Yat-sen University, Taiwan.
The secret behind crystals that shrink when heated
Scientists at Brookhaven Lab have new experimental evidence and a predictive theory that solves a long-standing materials science mystery: why certain crystalline materials shrink when heated.
Engineered protein crystals make cells magnetic
If scientists could give living cells magnetic properties, they could perhaps manipulate cellular activities with external magnetic fields.
Appreciating the classical elegance of time crystals
Structures known as 'time crystals' -- which repeat in time as conventional crystals repeat in space -- have recently captured the interest and imagination of researchers across disciplines.
Making and controlling crystals of light
EPFL scientists have shown how light inside optical on-chip microresonators can be crystallized in a form of periodic pulse trains that can boost the performance of optical communication links or endow ultrafast LiDAR with sub-micron precision.
From crystals to glasses: a new unified theory for heat transport
Theoretical physicists from SISSA and the UCDavis lay brand new foundations to heat transport in materials, which finally allow crystals, polycrystalline solids, alloys, and glasses to be treated on the same solid footing.
How to trick electrons to see the hidden face of crystals
The 3D analysis of crystal structures requires a full 3D view of the crystals.
Science snapshots: Chromosomes, crystals, and drones
From Berkeley Lab: exploring human origins in the uncharted territory of our chromosomes; scientists grow spiraling new material; drones will fly for days with this new technology
Probing semiconductor crystals with a sphere of light
Tohoku University researchers have developed a technique using a hollow sphere to measure the electronic and optical properties of large semiconducting crystals.
Dowsing for electric fields in liquid crystals
Nematic liquid crystals can be oriented in a curious way termed the 'dowser texture', which is sensitive to external conditions.
More Crystals News and Crystals Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab