Nav: Home

Fast, high capacity fiber transmission gets real for data centers

March 08, 2018

SAN DIEGO -- A cutting edge, "off-line" signal transmission mechanism, experimentally demonstrated just a few years ago, is now on-line as a real-time bidirectional transmission system. At OFC 2018, the single-most important annual event in optical communications, being held March 11-15 in San Diego California, a research team from Nokia will report the real-time, bi-directional transmission of 78 interleaved, 400 gigabit per second (Gb/s) channels with a 31.2 terabit per second (Tb/s) fiber capacity.

At twice the 200 Gb/s standard rate found in most applications, the C-band signals were transmitted over a single, 90-kilometer-long single-mode fiber. Such a high transmission capacity and rate would offer a particularly attractive capacity bump to current data center interconnections, where nearby data centers are coupled together to form a single, larger center.

Fundamentally speaking, there are two ways to go about increasing a data center's capacity: either increase the number of (parallel) fibers through which the data travels, or increase how much data you transmit through existing fibers. While the use of additional fibers is a more straightforward approach (particularly for data centers which usually rent fibers to use), it is expensive both in price and power consumption.

Perhaps unsurprisingly, there is considerable interest in finding ways of increasing the transmission capacity of fibers already in use. As multiplexers (devices that combine multiple signals into one) and transponders become more sophisticated, so do the available signal encoding/decoding processes. Current standards for wavelength division multiplexed (WDM) signals, for instance, can combine up to 96 channels on C band.

The off-line proof-of-principle experiments first demonstrating the high capacity, error-free 400 Gb/s WDM transmission capitalized on a very high spectral efficiency to boost capacity in the fiber. While this is not the first real-time implementation of 400 Gb/s channels, it is the first to be successful with an impressive 8 bit per second-per hertz spectral efficiency.

"So far, three different companies have demonstrated a real-time 400 Gb/s transponder over the last three years, but we are the only ones reporting 400 Gb/s with such high spectral efficiency," said Thierry Zami, who will be presenting the team's work. "The spectral efficiency allows us to provide quite a large fiber capacity. So, in this case we claim 31.2 Tb/s, but in practice, without the limitations in terms of number of loading channels in our lab, we could have reached about 38 Tb/s over whole C band. This is really one of the innovative points."

In addition to using the real-time, commercially available transponders, the setup used components that are compliant with current network standards. After testing the unidirectional transmission configuration, Zami and his team wanted to further improve the resulting Q2 margins, which represent the signal to noise power ratio.

"It was important for us to maintain simple amplification, only based on erbium doped fiber amplifiers, and to use standard fibers," said Zami. "To increase the system margins observed with the unidirectional set up, we could have decided to make the same unidirectional experiment with slightly larger channel spacing, for instance. But we said, 'no' because we wanted to remain compliant as much as possible with the standard grid."

The team instead developed a bi-directional transmission set up with the same 90-kilometer fiber, where the even and odd 400 Gb/s channels, with the same 50 GHz grid spacing, transmit in opposite directions. For this configuration, they measured Q2 margins at least twice as large as for the unidirectional version. And because it employed two 100 GHz-spaced multiplexers to create the 50 GHz channel spacing, unlike the unidirectional system's individual 50 GHz multiplexer, it benefits from wider filtering to exhibit better tolerance to frequency detuning.

Hear from the research team: 31.2-Tb/s real time bidirectional transmission of 78x400 Gb/s interleaved channels over C band of one 90-km SMF span (W1B.5), Wednesday, 14 March at 9:15 AM, Room 1B.
-end-
MEDIA REGISTRATION: Media/analyst registration for OFC 2018 can be accessed online. Further information is available on the event website at OFC, including travel details.

ABOUT OFC

The Optical Fiber Conference and Exposition (OFC) is the largest global conference and exposition for optical communications and networking professionals. For more than 40 years, OFC has drawn attendees from all corners of the globe to meet and greet, teach and learn, make connections and move business forward.

OFC includes dynamic business programming, an exposition of more than 700 companies, and high impact peer-reviewed research that, combined, showcase the trends and pulse of the entire optical networking and communications industry. OFC is managed by The Optical Society (OSA) and co-sponsored by OSA, the IEEE Communications Society (IEEE/ComSoc), and the IEEE Photonics Society. OFC 2018 will be held from 11-15 March 2018 at the San Diego Convention Center, California, USA. Follow @OFCConference, learn more OFC Conference LinkedIn, and watch highlights OFC YouTube.

Media Contacts:

Rebecca B. Andersen
The Optical Society
+1 202.416.1443
randersen@osa.org

Joshua Miller
The Optical Society
+1.202.416.1435
jmiller@osa.org

Thierry Zami
Ph. D - WDM Network Senior Architect
WDM Network Photonic Design
Nokia
Desk S0.032, Route de Villejust, 91620 Nozay, France
Tel : + 33 (0)1 60 40 27 99
thierry.zami@asn.com

The Optical Society

Related Data Articles:

Ups and downs in COVID-19 data may be caused by data reporting practices
As data accumulates on COVID-19 cases and deaths, researchers have observed patterns of peaks and valleys that repeat on a near-weekly basis.
Data centers use less energy than you think
Using the most detailed model to date of global data center energy use, researchers found that massive efficiency gains by data centers have kept energy use roughly flat over the past decade.
Storing data in music
Researchers at ETH Zurich have developed a technique for embedding data in music and transmitting it to a smartphone.
Life data economics: calling for new models to assess the value of human data
After the collapse of the blockchain bubble a number of research organisations are developing platforms to enable individual ownership of life data and establish the data valuation and pricing models.
Geoscience data group urges all scientific disciplines to make data open and accessible
Institutions, science funders, data repositories, publishers, researchers and scientific societies from all scientific disciplines must work together to ensure all scientific data are easy to find, access and use, according to a new commentary in Nature by members of the Enabling FAIR Data Steering Committee.
Democratizing data science
MIT researchers are hoping to advance the democratization of data science with a new tool for nonstatisticians that automatically generates models for analyzing raw data.
Getting the most out of atmospheric data analysis
An international team including researchers from Kanazawa University used a new approach to analyze an atmospheric data set spanning 18 years for the investigation of new-particle formation.
Ecologists ask: Should we be more transparent with data?
In a new Ecological Applications article, authors Stephen M. Powers and Stephanie E.
Should you share data of threatened species?
Scientists and conservationists have continually called for location data to be turned off in wildlife photos and publications to help preserve species but new research suggests there could be more to be gained by sharing a rare find, rather than obscuring it, in certain circumstances.
Futuristic data storage
The development of high-density data storage devices requires the highest possible density of elements in an array made up of individual nanomagnets.
More Data News and Data Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.