Nav: Home

CRISPR/Cas9 technique suppresses malaria infection in mosquitoes

March 08, 2018

Using a gene editing technique known as CRISPR/Cas9, scientists have shown that inactivating the gene FREP1 reduces mosquitos' susceptibility to infection with Plasmodium, a genus of parasites that causes malaria in humans. George Dimopoulos's group at Johns Hopkins University, present these findings in PLOS Pathogens.

Inside an Anopheles gambiae mosquito, Plasmodium undergoes a series of infection steps before reaching the mosquito's salivary gland, from which it spreads to bitten humans. This infection cycle relies on the activity of several mosquito proteins. Recently developed CRISPR/Cas9 tools offer new opportunities to study these proteins and determine whether they can be targeted to block malaria transmission.

Dimopoulos group had previously identified and examined several mosquito proteins involved in Plasmodium infection, including fibrinogen-related protein 1 (FREP1). A vaccine candidate based on targeting FREP1 was recently developed, but Dimopoulos' group took a different approach. They used a CRISPR/Cas9 technique to inactivate the FREP1 gene in A. gambiae mosquitos and explore the effects on malaria parasite infection.

The team found that FREP1 inactivation via CRISPR/Cas9 significantly suppressed infection of the mosquitos with both human and rodent Plasmodium parasites. This supports a potential for CRISPR/Cas9 technology in altering the genomes of wild mosquito populations to prevent the spread of malaria, which kills nearly 500,000 people worldwide every year.

However, the permanent inactivation of FREP1 in all mosquito stages and tissues also resulted in fitness costs for the mosquitos, including reduced blood-feeding ability, lower fertility, a lower egg hatching rate, slowed development, and reduced longevity after feeding on blood. This raises concerns that mosquitos with permanently inactivated FREP1 would not be able to compete with non-mutant mosquitos in the wild effectively enough to block malaria transmission. The investigators are now exploring ways to inactivate FREP1 in the gut of adult female mosquitoes only, with the hope to reduce the fitness cost while retaining resistance to the malaria parasite.

Nonetheless, the findings highlight the potential for CRISPR/Cas9 gene editing techniques to inactivate parasite host factors and improve understanding of malaria. Further research could also explore strategies to enable mosquitos with inactivated FREP1 to successfully compete with non-mutants.
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Pathogens: http://journals.plos.org/plospathogens/article?id=10.1371/journal. ppat.1006898

Citation: Dong Y, Simões ML, Marois E, Dimopoulos G (2018) CRISPR/Cas9 -mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection. PLoS Pathog 14(3): e1006898. https://doi.org/10.1371/journal.ppat.1006898

Funding: This work was supported by the National Institutes of Health / National Institute of Allergy and Infectious Disease grants R21AI131574 (to GD) and RO1AI122743 (to GD), and a Johns Hopkins Malaria Research Institute Postdoctoral Fellowship (to MLS), the Bloomberg Philanthropies (to GD). CNRS, Inserm, the University of Strasbourg and Agence Nationale de la Recherche (grants JCJC "GEMM" and #ANR-11-EQPX-0022) to EM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Malaria Articles:

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.
Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the Umeå University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.
Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.
New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.
Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.
Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.
Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.
Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.
Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.
The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.
More Malaria News and Malaria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.