Nav: Home

Listening to quantum radio

March 08, 2019

Researchers at Delft University of Technology have created a quantum circuit that enables them to listen to the weakest radio signal allowed by quantum mechanics. This new quantum circuit opens the door to possible future applications in areas such as radio astronomy and medicine (MRI). It also enables researchers to do experiments that can shed light on the interplay between quantum mechanics and gravity.

We have all been annoyed by weak radio signals at some point in our lives: our favourite song in the car turning to noise, being too far away from our wifi router to check our email. Our usual solution is to make the signal bigger, for instance by picking a different radio station or by moving to the other side of the living room. What if, however, we could just listen more carefully?

Weak radio signals are not just a challenge for people trying to find their favourite radio station, but also for magnetic resonance imaging (MRI) scanners at hospitals, as well as for the telescopes scientists use to peer into space.

In a quantum 'leap' in radio frequency detection, researchers in the group of Prof. Gary Steele in Delft demonstrated the detection of photons or quanta of energy, the weakest signals allowed by the theory of quantum mechanics.

Quantum chunks

One of the strange predictions of quantum mechanics is that energy comes in tiny little chunks called 'quanta'. What does this mean? "Say I am pushing a kid on a swing", lead researcher Mario Gely said. "In the classical theory of physics, if I want the kid to go a little bit faster I can give them a small push, giving them more speed and more energy. Quantum mechanics says something different: I can only increase the kid's energy one 'quantum step' at a time. Pushing by half of that amount is not possible."

For a kid on a swing these 'quantum steps' are so tiny that they are too small to notice. Until recently, the same was true for radio waves. However, the research team in Delft developed a circuit that can actually detect these chunks of energy in radio frequency signals, opening up the potential for sensing radio waves at the quantum level.

From quantum radio to quantum gravity?

Beyond applications in quantum sensing, the group in Delft is interested in taking quantum mechanics to the next level: mass. While the theory of quantum electromagnetism was developed nearly 100 years ago, physicists are still puzzled today on how to fit gravity into quantum mechanics.

"Using our quantum radio, we want to try to listen to and control the quantum vibrations of heavy objects, and explore experimentally what happens when you mix quantum mechanics and gravity", Gely said. "Such experiments are hard, but if successful we would be able to test if we can make a quantum superposition of space-time itself, a new concept that would test our understanding of both quantum mechanics and general relativity."
-end-


Delft University of Technology

Related Quantum Mechanics Articles:

Engineers examine chemo-mechanics of heart defect
Elastin and collagen serve as the body's building blocks. Any genetic mutation short-circuiting their function can have a devastating, and often lethal, health impact.
Testing quantum field theory in a quantum simulator
Quantum field theories are often hard to verify in experiments.
Quantum mechanics are complex enough, for now...
Physicists have searched for deviations from standard quantum mechanics, testing whether quantum mechanics requires a more complex set of mathematical rules.
New quantum states for better quantum memories
How can quantum information be stored as long as possible?
Problems in mechanics open the door to the orderly world of chaos
Despite the impression given in most mechanics texts, most non-trivial mechanics problems simply have no analytic solutions.
USC quantum computing researchers reduce quantum information processing errors
USC Viterbi School of Engineering scientists found a new method to reduce the heating errors that have hindered quantum computing.
Quantum satellite device tests technology for global quantum network
Researchers at the National University of Singapore and University of Strathclyde, UK, report first data from a satellite that is testing technology for a global quantum network.
Understanding the mechanics of the urinary bladder
Dr. S. Roccabianca and Dr. T.R. Bush, researchers from Michigan State University compiled an extensive review of the key contributions to understanding the mechanics of the bladder ranging from work conducted in the 1970s through the present time with a focus on material testing and theoretical modeling.
Mechanics of a heartbeat are controlled by molecular strut in heart muscle cells
Using high-resolution microscopy, researchers found that molecular struts called microtubules interact with the heart's contractile machinery to provide mechanical resistance for the beating of the heart, which could provide a better understanding of how microtubules affect the mechanics of the beating heart, and what happens when this goes awry.
Quantum computing closer as RMIT drives towards first quantum data bus
Researchers have trialled a quantum processor capable of routing quantum information from different locations in a critical breakthrough for quantum computing.

Related Quantum Mechanics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".