Zinc could help as non-antibiotic treatment for UTIs

March 08, 2019

New details about the role of zinc in our immune system could help the development of new non-antibiotic treatment strategies for bacterial diseases, such as urinary tract infections (UTIs).

UTIs are one of the most common bacterial infections worldwide with about 150 million cases each year, and can lead to serious conditions such as kidney infection and sepsis.

A team of cross-institutional University of Queensland researchers led by Professor Matt Sweet, Professor Mark Schembri and Dr Ronan Kapetanovic examined how our immune system uses zinc to fight uropathogenic Escherichia coli (UPEC) - the major cause of UTIs.

Dr Kapetanovic, from UQ's Institute for Molecular Bioscience (IMB), said researchers already knew that zinc was toxic to bacteria.

"We confirmed by direct visualisation that cells in our immune system known as macrophages deploy zinc to clear bacterial infections," Dr Kapetanovic said.

They also discovered that UPEC has a two-pronged strategy to survive the body's immune response.

"We found that, compared to non-pathogenic bacteria, UPEC can evade the zinc toxicity response of macrophages, but these bacteria also show enhanced resistance to the toxic effects of the zinc.

"These findings give us clues to how our immune system battles infections, and also potential avenues to develop treatments, such as blocking UPEC's escape from zinc to make it more sensitive to this metal.

"Treatment strategies that don't use antibiotics have the advantage of bacteria not developing resistance; if we can reprogram our immune cells to make them stronger, or change the way they respond to bacteria, we would be better equipped to fight superbugs."

UQ's School of Chemistry and Molecular Biosciences Dr Minh Duy Phan said the study also identified the full set of UPEC genes that provide protection against zinc toxicity.

"This knowledge provides another potential avenue for developing antimicrobial agents for the treatment of UTIs", Dr Phan said.

IMB PhD student Miss Claudia Stocks said the methods the team used could be applied to the study of other bacterial diseases, not just UTIs.

"Macrophages deploy zinc toxicity against several types of bacteria, such as Mycobacterium tuberculosis, Salmonella and Streptococcus, that aren't necessarily being cleared from the body by normal mechanisms," Miss Stocks said.

"We developed zinc sensors that can be adapted to study different types of bacteria, bringing us closer to understanding our immune system better and creating therapies for a range of infectious diseases."

The research was published in Proceedings of the National Academy of Sciences USA and funded by Australia's National Health and Medical Research Council, the Australian Research Council and Australian Cancer Research Foundation.
-end-


University of Queensland

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.