Nav: Home

NASA's LRO sheds light on lunar water movement

March 08, 2019

Scientists, using an instrument aboard NASA's Lunar Reconnaissance Orbiter (LRO), have observed water molecules moving around the dayside of the Moon.

A paper published in Geophysical Research Letters describes how Lyman Alpha Mapping Project (LAMP) measurements of the sparse layer of molecules temporarily stuck to the surface helped characterize lunar hydration changes over the course of a day.

Up until the last decade or so, scientists thought the Moon was arid, with any water existing mainly as pockets of ice in permanently shaded craters near the poles. More recently, scientists have identified surface water in sparse populations of molecules bound to the lunar soil, or regolith. The amount and locations vary based on the time of day. This water is more common at higher latitudes and tends to hop around as the surface heats up.

"This is an important new result about lunar water, a hot topic as our nation's space program returns to a focus on lunar exploration," said Dr. Kurt Retherford, the principal investigator of the LAMP instrument from Southwest Research Institute in San Antonio, Texas. "We recently converted the LAMP's light collection mode to measure reflected signals on the lunar dayside with more precision, allowing us to track more accurately where the water is and how much is present."

Water molecules remain tightly bound to the regolith until surface temperatures peak near lunar noon. Then, molecules thermally desorb and can bounce to a nearby location that is cold enough for the molecule to stick or populate the Moon's extremely tenuous atmosphere or exosphere, until temperatures drop and the molecules return to the surface. SwRI's Dr. Michael Poston, now a research scientist on the LAMP team, had previously conducted extensive experiments with water and lunar samples collected by the Apollo missions. This research revealed the amount of energy needed to remove water molecules from lunar materials, helping scientists understand how water is bound to surface materials.

"Lunar hydration is tricky to measure from orbit, due to the complex way that light reflects off of the lunar surface," Poston said. "Previous research reported quantities of hopping water molecules that were too large to explain with known physical processes. I'm excited about these latest results because the amount of water interpreted here is consistent with what lab measurements indicate is possible.

Scientists have hypothesized that hydrogen ions in the solar wind may be the source of most of the Moon's surface water. With that in mind, when the Moon passes behind the Earth and is shielded from the solar wind, the "water spigot" should essentially turn off. However, the water observed by LAMP does not decrease when the Moon is shielded by the Earth and the region influenced by its magnetic field, suggesting water builds up over time, rather than "raining" down directly from the solar wind.

"These results aid in understanding the lunar water cycle and will ultimately help us learn about accessibility of water that can be used by humans in future missions to the Moon," said Amanda Hendrix, a senior scientist at the Planetary Science Institute and lead author of the paper. "Lunar water can potentially be used by humans to make fuel or to use for radiation shielding or thermal management; if these materials do not need to be launched from Earth, that makes these future missions more affordable."

"This result is an important step in advancing the water story on the Moon and is a result of years of accumulated data from the LRO mission," said John Keller, LRO deputy project scientist from NASA's Goddard Space Flight Center in Greenbelt, Maryland. Goddard manages the LRO mission for the Science Mission Directorate at NASA Headquarters in Washington, D.C. Funding for the research came from LRO, and the team received additional support from a NASA Solar System Exploration Research Virtual Institute (SSERVI) cooperative agreement.

NASA is leading a sustainable return to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.
-end-
For more information on LRO, visit: https://www.nasa.gov/lro

For more information on NASA's Moon to Mars theme, visit: https://www.nasa.gov/moontomars

NASA/Goddard Space Flight Center

Related Magnetic Field Articles:

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
Magnetic field milestone
Physicists from the Institute for Solid State Physics at the University of Tokyo have generated the strongest controllable magnetic field ever produced.
New world record magnetic field
Scientists at the University of Tokyo have recorded the largest magnetic field ever generated indoors -- a whopping 1,200 tesla, as measured in the standard units of magnetic field strength.
Researchers discover link between magnetic field strength and temperature
Researchers recently discovered that the strength of the magnetic field required to elicit a particular quantum mechanical process corresponds to the temperature of the material.
More Magnetic Field News and Magnetic Field Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.