Nav: Home

New method of scoring protein interactions mines large data sets from a fresh angle

March 08, 2019

KANSAS CITY, MO--Researchers from the Stowers Institute for Medical Research have created a novel way to define individual protein associations in a quick, efficient, and informative way. These findings, published in the March 8, 2019, issue of Nature Communications, show how the topological scoring (TopS) algorithm, created by Stowers researchers, can - by combining data sets - identify proteins that come together.

The approach is similar to looking at the activities and interactions of all the individuals in a community and then selecting out the most meaningful interactions, some which may be very rare. The researchers are looking for the biological equivalent of two individuals who may be the only two in the entire community that participate in an important interaction.

Not only does this help researchers identify how proteins perform biological functions or carry out biological processes, the algorithm can be applied to previously generated biological data and potentially other areas of science to glean new information.

"It's a form of big data analysis that we are applying to proteomics data to identify and understand protein interaction networks," says Michael Washburn, PhD, director of the Stowers Proteomics Center. "It's complementary to a lot of techniques already in use so it can be used to ask and answer new questions."

Protein data sets can be challenging to examine for meaningful information because they are so large. "You have thousands of proteins to look at," says Mihaela Sardiu, PhD, a senior research specialist at Stowers. Understanding how a wide variety of proteins come together to do something, like repair DNA, is a difficult problem. "We wanted to simplify the problem."

That meant instead of taking an overall view of everything, they hunted for less common events. Researchers did this by looking for bait (proteins already known to be involved in processes of interest) and prey (proteins that could interact with bait proteins) to see how they interacted in human DNA repair and yeast chromatin remodeling complexes. Through TopS, data is analyzed in a parallel fashion, meaning that data from several biologically-related baits are considered at the same time. A key attribute of TopS is the ability to evaluate the preference of a prey protein for a bait relative to other baits. "Instead of calculating a score by concentrating only information of a single bait, we now aggregate information from the entire data set," explains Sardiu.

Washburn and Sardiu believe that TopS can be applied to a wide range of data sets beyond proteomics, in both basic research and beyond. Sardiu sees potential in using it for healthcare data, where physicians might be able to compare a patient's health to others, like being able to tell if a patient's disease is "really advanced compared to others or not," she says.

The team has also published these findings on Github, a computer code repository, because they want to offer other researchers the opportunity to test the algorithm and see how they can apply it to their own projects.

"We're excited to see how far this can go. It's a potentially high impact tool and we want to see what other creative and innovative people can come up with," says Washburn. "We think this is a really valuable potential tool for a lot of people out there who struggle with the challenge of sorting through very large-scale data."

Other contributors from the Stowers Institute included Joshua M. Gilmore, PhD, Brad D. Groppe, Arnob Dutta, PhD, and Laurence Florens, PhD. Dutta is currently an Assistant Professor at the University of Rhode Island, Groppe is now working at Thermo Fisher Scientific, and Gilmore is a scientist with Boehringer Ingelheim.

This research was funded by the Stowers Institute and a grant from the National Institute of General Medical Sciences of the National Institutes of Health under award number R01GM112639. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Lay Summary of Findings

Researchers from the Stowers Institute for Medical Research have created a topological scoring (TopS) algorithm, which allows scientists to look at big sets of data in new ways, to help them uncover more details about how proteins interact and understand more precisely how certain activities on the cellular level happen. The findings appear in the March 8, 2019, issue of Nature Communications. Study lead and Director of the Stowers Proteomics Center Michael Washburn, PhD, sees potential in applying this algorithm to large data sets in other areas of scientific research, and beyond.
-end-
About the Stowers Institute for Medical Research

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife, Virginia, opened the Institute in 2000. Currently, the Institute is home to about 500 researchers and support personnel, over 20 independent research programs, and more than a dozen technology development and core facilities. Learn more about the Institute at http://www.stowers.org and about its graduate program at http://www.stowers.org/gradschool.

Stowers Institute for Medical Research

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".