Nav: Home

THOR wrangles complex microbiomes into a model for improving them

March 08, 2019

MADISON, Wis. -- "Microbial communities run the world," says Jo Handelsman, director of the Wisconsin Institute for Discovery at the University of Wisconsin-Madison.

"People always laugh when I say that," she adds. "But it's true."

Our rich new understanding of microbial communities and their influence on human health or crop productivity has led to the dream of changing these communities to produce benefits. In pursuit of that dream, millions of Americans now take probiotics, beneficial microbes they hope will improve their gut.

But the immense complexity and resiliency of these microbiomes leave researchers unsure how to produce predictable and long-lasting changes for the better.

New research by Handelsman and her collaborators addresses that complexity head-on. The team developed a community they named THOR, three species of bacteria isolated from soybean roots and grown together. The complex community of microbes developed new behaviors together that couldn't be predicted from the individual members alone -- they grew tougher structures known as biofilms, changed how they moved across their environment, and controlled the release of a novel antibiotic.

Each of the three members of THOR has a sequenced genome, and an array of tools are available to easily study the bacteria in isolation and together, which opens up opportunities to start unraveling the complexity of microbial communities like THOR and others. A better understanding of these microbiomes could help scientists figure out how to improve them.

The work is published March 5 in the journal mBio. The work was led by Handelsman lab postdoctoral researcher Gabriel Lozano with collaborators at the UW-Madison Department of Plant Pathology, Yale University and other institutions.

The thunderous name THOR stems from the members of the community: The Hitchhikers Of the Rhizosphere. Years ago, Handelsman's lab noticed that several bacteria came along for the ride when members of common Bacillus bacteria were isolated from the microbiome of soybean roots, known as the rhizosphere. These hitchhikers only showed themselves when Bacillus bacteria were grown in the cold for several weeks.

Those tight associations between different species suggest they could serve as a model community to test how complex traits emerge when multiple species share the same space. The researchers settled on species from the Pseudomonas and Flavobacterium groups of bacteria to grow and study alongside Bacillus.

Combined, the members of THOR boasted some 15,000 genes and were capable of producing thousands of small molecules, creating "layers of complexity" over time and across space, says Handelsman.

When grown alone, the Pseudomonas member of THOR produces a biofilm, a hearty structure that protects the bacteria from its environment. Biofilms gum up implants used in medicine and make bacteria resistant to antibiotics. When all three members of THOR were grown together, the community produced two times as much biofilm and the biofilm lasted longer than when Pseudomonas was alone.

"Even when their populations are small, these other species are sparking larger biofilms," says Handelsman.

Other complex traits emerged in THOR as well. The Bacillus member reduced the production of antibiotics made by Pseudomonas, protecting Flavobacterium from their effects. And the other members of THOR induced Bacillus colonies to grow out like the branches of a tree, spreading over and around the other bacteria in complex patterns.

Many efforts to manipulate microbiomes are focused on improving human health, and model communities like THOR could help scientists understand how complex microbial relationships can be altered to benefit us.

But THOR's information about the microbiome of plant roots, the rhizosphere, is just as vital. The rhizosphere helps glue soil together, preventing erosion. And soil locks up three times more carbon than floats in the atmosphere, making it an important element in addressing climate change. Knowing how individual microbes come together to produce the rich, complex behavior of the soil microbiome may be a key to maximizing the benefit we derive from these unseen communities.

"It's one of the most critical relationships we have," says Handelsman.
-end-
CONTACT: Jo Handelsman, jo.handelsman@wisc.edu

DOWNLOAD IMAGE: https://uwmadison.box.com/v/thor

This work was supported by National Science Foundation grant MCB-1243671.

Eric Hamilton, (608) 263-1986, eshamilton@wisc.edu

University of Wisconsin-Madison

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...