Study on sub-millimeter telescope on Chile mountain

March 09, 2004

ITHACA, N.Y. -- Cornell University and the California Institute of Technology (Caltech) have signed an agreement committing the two institutions to collaborate on the planning for a 25-meter infrared telescope high in the Atacama Desert of northern Chile.

The universities will focus on the first phase of telescope development, says Riccardo Giovanelli, professor of astronomy at Cornell and project director. During the $2 million study phase, Cornell and Caltech researchers will outline the technical and financial resources required to construct the new telescope. Fred Young, an active Cornell alumnus and retired businessman from Racine, Wisc., will fund most of Cornell's share of the study.

The estimated total cost of the telescope will be $60 million and is expected see "first light" in 2012. The Atacama site, about 1,000 miles north of Santiago, is more than 5,000 meters (16,500 feet) above sea level.

The Atacama telescope will be sensitive to light with wavelengths longer than 200 microns, or 0.2 millimeters. These wavelengths (called far-infrared or sub-millimeter) are too long to be perceived by the human eye, but are shorter than the waves that transmit radio and television signals.

Because these waves are absorbed by water vapor in the Earth's atmosphere, they are difficult to detect from the ground. The high Atacama Desert will position the telescope above most of the water vapor in the atmosphere, making the site one of the best on Earth for far-infrared astronomy.

The new telescope will be "by far the most sensitive sub-millimeter telescope in the world," says Cornell astronomy professor Gordon Stacey, who studies infrared astronomy and instrumentation and has been a major advocate for the project. Because the telescope will be so sensitive -- 30 times more sensitive than current sub-millimeter telescopes -- it will be able to probe star formation during the epoch of galaxy formation, the time in the universe's history at which galaxies first appeared, says Stacey.

Cornell and Caltech researchers also will use the new telescope to study the origin of the large-scale structure of the universe, a filamentary web that Giovanelli describes as a "bowl of spaghetti." Also on the telescope's agenda are circumstellar disks, the rotating pancakes of dust and gas in which planets form. These planetary nurseries are shrouded from optical telescopes by light-absorbing dust, but they emit an infrared glow that could reveal hidden planets.

Giovanelli notes that the telescope will take advantage of the "coming of age" of new sub-millimeter detector technology. Called large format bolometer arrays, these detectors will sensitively measure radiation collected by the telescope over tens of thousands of pixels. Current detectors have only a few hundred pixels and, just as with digital cameras or computer monitors, more pixels create sharper images.

A steering committee, headed by Giovanelli and staffed by four members from both participating universities will direct the project. The study phase is expected to be complete in two years or less, followed by engineering development and construction.

"Caltech is just a wonderful partner, with their long history in sub-millimeter astronomy," says Stacey. Though the agreement does not formally commit Cornell and Caltech to collaboration beyond the study phase, Giovanelli notes that it spells out the universities' intentions to work together to bring the project to completion.
-end-
This release was reported and written by Cornell News Service science writer intern Kate Becker.



Cornell University

Related Astronomy Articles from Brightsurf:

Spitzer space telescope legacy chronicled in Nature Astronomy
A national team of scientists Thursday published in the journal Nature Astronomy two papers that provide an inventory of the major discoveries made possible thanks to Spitzer and offer guidance on where the next generation of explorers should point the James Webb Space Telescope (JWST) when it launches in October 2021.

New technology is a 'science multiplier' for astronomy
A new study has tracked the long-term impact of early seed funding obtained from the National Science Foundation on many key advances in astronomy over the past three decades.

Powerful new AI technique detects and classifies galaxies in astronomy image data
Researchers at UC Santa Cruz have developed a powerful new computer program called Morpheus that can analyze astronomical image data pixel by pixel to identify and classify all of the galaxies and stars in large data sets from astronomy surveys.

Astronomy student discovers 17 new planets, including Earth-sized world
University of British Columbia astronomy student Michelle Kunimoto has discovered 17 new planets, including a potentially habitable, Earth-sized world, by combing through data gathered by NASA's Kepler mission.

Task force recommends changes to increase African-American physics and astronomy students
Due to long-term and systemic issues leading to the consistent exclusion of African-Americans in physics and astronomy, a task force is recommending sweeping changes and calling for awareness into the number and experiences of African-American students studying the fields.

How to observe a 'black hole symphony' using gravitational wave astronomy
New research led by Vanderbilt astrophysicist Karan Jani presents a compelling roadmap for capturing intermediate-mass black hole activity.

Graphene sets the stage for the next generation of THz astronomy detectors
Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes.

3D holograms bringing astronomy to life
Scientists unravelling the mysteries of star cluster formation have taken inspiration from a 19th century magic trick, to help explain their work to the public.

The vibrating universe: Making astronomy accessible to the deaf
Astronomers at the University of California, Riverside, have teamed with teachers at the California School for the Deaf, Riverside, or CSDR, to design an astronomy workshop for students with hearing loss that can be easily used in classrooms, museums, fairs, and other public events.

Prehistoric cave art reveals ancient use of complex astronomy
As far back as 40,000 years ago, humans kept track of time using relatively sophisticated knowledge of the stars

Read More: Astronomy News and Astronomy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.