NYU and MSKCC research provides model for understanding chemically induced cancer initiation

March 09, 2005

A team from the chemistry and biology departments of New York University, in collaboration with Memorial Sloan Kettering Cancer Center (MSKCC), has uncovered a conformational switch--a change in shape in a carcinogen-damaged DNA site--in tumor suppressor genes altered by a known cancer-causing chemical found in cigarette smoke. This finding may open new horizons for understanding the initiation of chemically induced cancers.

The findings appear as the cover story in the latest issue of the Journal of Molecular Biology. This team was headed by Dinshaw Patel at MSKCC, Nicholas Geacintov, chair of NYU's chemistry department, and Suse Broyde, a professor in NYU's biology department.

The studied gene, p53, is an important tumor suppressor gene that plays critical roles in cellular functions such as cell-cycle control, differentiation, and DNA repair. Many different chemical carcinogens, including those that are primary components of cigarette smoke, are known to damage DNA. This damage occurs at special positions of the p53 gene, called mutation hot spots, which have been previously linked with cigarette smoke. This molecular link between chemical DNA damage and cigarette-associated lung cancer has been called the "smoking gun."

In the study, the conformational switch discovered by the research team entails a change in the conformation of a carcinogen-damaged site in a DNA model sequence similar to that in a p53 mutation hot spot. The change is brought about by the presence of a single methyl group (composed only of one carbon and three hydrogen atoms) on a cytosine base adjacent to the damaged site. Without this methyl group, the bulky chemical carcinogen resides at an external binding site in the minor groove of the DNA double helix. However, in the presence of this single methyl group, it assumes an intercalated structure in which the carcinogenic residue is sandwiched between adjacent base pairs in the double helix.

"Such conformational differences in methylated and unmethylated DNA sequences may be significant because of potential alterations in the cellular processing of these lesions by DNA transcription, replication, and repair enzymes," said NYU's Geacintov.

"Because environmental chemical carcinogens, including those present in cigarette smoke, are a significant threat to human health, it is imperative to understand how chemicals can induce mutations and cancer at the molecular level," added NYU's Broyde. "Such information is needed for devising novel preventive and therapeutic strategies for addressing the problem of cancer induction by environmental chemical carcinogens."

The researchers added that the finding opens new horizons, at the molecular level, for understanding the effects of methylation at p53 mutation hot spots on the properties of carcinogen-DNA lesions. Current thinking in the field of chemical carcinogenesis is that the mutation-prone, or error-free processing of such carcinogen-damaged p53 genes by DNA repair proteins and DNA and RNA polymerases can determine whether these lesions ultimately contribute to the development of lung and other cancers.
-end-
The research was supported by research grants from the National Cancer Institute of the National Institutes of Health.

New York University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.