Gold nanorods assemble themselves into rings

March 09, 2007

Rice University chemists have discovered that tiny building blocks known as gold nanorods spontaneously assemble themselves into ring-like superstructures.

This finding, which will be published as the inside cover article of the March 19 international edition of the chemistry journal Angewandte Chemie, could potentially lead to the development of novel nanodevices like highly sensitive optical sensors, superlenses, and even invisible objects for use in the military.

"Finding new ways to assemble nano-objects into superstructures is an important task because at the nanoscale, the properties of those objects depend on the arrangement of individual building blocks," said principal investigator Eugene Zubarev, the Norman Hackerman-Welch Young Investigator and assistant professor of chemistry at Rice.

Although ring-like assemblies have been observed in spherical nanoparticles and other symmetrical molecules, until now such structures had not been documented with rod-shaped nanostructures.

Like many nanoscale objects, gold nanorods are several billionths of a meter, or 1,000 times smaller than a human hair. Zubarev used hybrid nanorods for this research because attached to their surface are thousands of polymer molecules, which are flexible chainlike structures. The central core of the nanorods is an inorganic crystal, but the polymers attached to the outside are organic species. The combination of the inorganic and organic features resulted in a hybrid structure that proved to be critical to the study.

Working with Rice graduate student Bishnu Khanal, Zubarev placed the nanorods in a solution of organic solvent called chloroform. As the chloroform evaporated, its surface temperature dropped low enough to cause condensation of water droplets from the air, much like how dew forms. As thousands and thousands of microdroplets of water formed on the surface of the liquid chloroform, the nanorods that had been suspended in the solution started to press up against the round droplets and form rings around them. The polymer coating prevented the rods from being absorbed into the droplets because it is insoluble in water.

After the droplets evaporated, the nanorods remained in their ring formation.

"When nanorods are organized into a ring, significant changes in their optical and electromagnetic properties occur," Zubarev said. "These can have technological applications in the area of metamaterials, which have enormous potential in opto-electronics, communications and military applications." Zubarev said thousands of well-defined rings can be produced in a matter of seconds using the approach from his study. "This method is surprisingly simple and can be used for organizing nanocrystals of various shapes, size and chemical composition into circular arrays."
-end-
The research was funded by the National Science Foundation and the Welch Foundation.

Rice University

Related Rice Articles from Brightsurf:

C4 rice's first wobbly steps towards reality
An international long-term research collaboration aimed at creating high yielding and water use efficient rice varieties, has successfully installed part of the photosynthetic machinery from maize into rice.

Rice has many fathers but only two mothers
University of Queensland scientists studied more than 3000 rice genotypes and found diversity was inherited through two maternal genomes identified in all rice varieties.

Rice rolls out next-gen nanocars
Rice University researchers continue to advance the science of single-molecule machines with a new lineup of nanocars, in anticipation of the next international Nanocar Race in 2022.

3D camera earns its stripes at Rice
The Hyperspectral Stripe Projector captures spectroscopic and 3D imaging data for applications like machine vision, crop monitoring, self-driving cars and corrosion detection.

Climate change could increase rice yields
Research reveals how rice ratooning practices can help Japanese farmers increase rice yields.

Breeding new rice varieties will help farmers in Asia
New research shows enormous potential for developing improved short-duration rice varieties.

High-protein rice brings value, nutrition
A new advanced line of rice, with higher yield, is ready for final field testing prior to release.

Rice plants engineered to be better at photosynthesis make more rice
A new bioengineering approach for boosting photosynthesis in rice plants could increase grain yield by up to 27 percent, according to a study publishing January 10, 2019 in the journal Molecular Plant.

Can rice filter water from ag fields?
While it's an important part of our diets, new research shows that rice plants can be used in a different way, too: to clean runoff from farms before it gets into rivers, lakes, and streams.

Rice plants evolve to adapt to flooding
Although water is essential for plant growth, excessive amounts can waterlog and kill a plant.

Read More: Rice News and Rice Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.