Nav: Home

Scientists determine structure of brain receptor implicated in epilepsy and PMT

March 09, 2008

Scientists funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have published new research in the journal Molecular Pharmacology identifying the structure of a receptor in the brain implicated in conditions such as epilepsy and pre-menstrual tension. The same receptor has also been reported to be highly sensitive to alcohol.

The University of Cambridge team, in collaboration with colleagues at Aston University and the University of Alberta, have determined the arrangement of the constituent parts of an uncommon but important type of GABA receptor in the brain. GABAA receptors in the central nervous system play important roles in the body's response to gamma-aminobutyric acid (GABA), a chemical used by the brain to control certain functions. By understanding how the receptors' sub-units are arranged, scientists may now be able to develop drugs to block or stimulate them, providing hope for sufferers of a range of conditions.

Different types of GABAA receptor have been shown to play various roles in the body's control of behaviour and development. The Cambridge scientists are the first to determine the structure of a type of GABAA receptor containing the so-called delta sub-unit. This receptor type is found in small numbers in the body but is thought to be disproportionately important in controlling our state of consciousness; it is highly sensitive to anaesthetics, and has been linked to epilepsy and pre-menstrual tension, and to the body's response to alcohol.

The team used an atomic force microscope to detect the receptors. They applied tags to the receptors that bind to different sub-units. These can then be identified with the microscope, which scans a probe over the surface of a sample. By identifying the tags the team could identify where the various sub-units were located. Armed with this information, researchers can now build detailed models of the receptor which can be used to develop drugs to intervene in the signals that it receives.

Dr Mike Edwardson, who led the research team, said: "This type of GABA receptor plays a crucial role in the body's response to a range of stimuli. Scientists think that when there is a problem in the signalling, conditions such as epilepsy and PMT can occur. Now we have identified the detailed structure of the receptor we are in a better position to design drugs that bind to it."

Professor Nigel Brown, BBSRC Director of Science and Technology, commented: "Basic bioscience research has a crucial role to play in understanding conditions that affect the health and quality of life for millions of people. If we learn the detailed mechanisms by which the body functions, medical scientists and the pharmaceutical industry can develop treatments to intervene when it goes wrong."
-end-
VIDEO FOOTAGE OF DR MIKE EDWARDSON EXPLAINING THIS RESEARCH IS AVAILABLE FOR MEDIA USE - DOWNLOAD FROM: http://www.bbsrc.ac.uk/media/releases/2008/080307_brain_epilepsy_pmt.html

Contact

Dr Mike Edwardson, University of Cambridge
Tel: 01223 334 014, email: jme1000@cam.ac.uk

BBSRC Media Office
Matt Goode, Tel: 01793 413299, email: matt.goode@bbsrc.ac.uk
Nancy Mendoza, Tel: 01793 413355, email: nancy.mendoza@bbsrc.ac.uk
Tracey Jewitt, Tel: 01793 414694, email: tracey.jewitt@bbsrc.ac.uk

University of Cambridge Communications
Genevieve Maul, Tel: 01223 332300, email: gm349@cam.ac.uk

Notes to Editors

This research is published in Molecular Pharmacology, March 2008, Volume 73, pages 960-967.

The research was funded by the Biotechnology and Biological Sciences Research Council.

About BBSRC

The Biotechnology and Biological Sciences Research Council (BBSRC) is the UK funding agency for research in the life sciences. Sponsored by Government, BBSRC annually invests around £380 million in a wide range of research that makes a significant contribution to the quality of life for UK citizens and supports a number of important industrial stakeholders including the agriculture, food, chemical, healthcare and pharmaceutical sectors. http://www.bbsrc.ac.uk

Biotechnology and Biological Sciences Research Council

Related Epilepsy Articles:

Breaching the brain's defense causes epilepsy
Epileptic seizures can happen to anyone. But how do they occur and what initiates such a rapid response?
Using connectomics to understand epilepsy
Abnormalities in structural brain networks and how brain regions communicate may underlie a variety of disorders, including epilepsy, which is one focus of a two-part Special Issue on the Brain Connectome in Brain Connectivity, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers.
Epilepsy: Triangular relationship in the brain
When an epileptic seizure occurs in the brain, the nerve cells lose their usual pattern and fire in a very fast rhythm.
How concussions may lead to epilepsy
Researchers have identified a cellular response to repeated concussions that may contribute to seizures in mice like those observed following traumatic brain injury in humans.
Understanding epilepsy in pediatric tumors
A KAIST research team led by Professor Jeong Ho Lee of the Graduate School of Medical Science and Engineering has recently identified a neuronal BRAF somatic mutation that causes intrinsic epileptogenicity in pediatric brain tumors.
More Epilepsy News and Epilepsy Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...