Nav: Home

Changes in heart activity may signal epilepsy

March 09, 2016

Doctors have long characterized epilepsy as a brain disorder, but researchers at Case Western Reserve University have found that part of the autonomic nervous system functions differently in epilepsy during the absence of seizures.

This connection to the involuntary division of the nervous system may have implications for diagnosing and treating the disease and understanding sudden unexpected death in epilepsy (SUDEP).

The research is published online in the Journal of Neurophysiology.

"All the findings of our study on heart rate variability in epilepsy point to increased activity in the parasympathetic nervous system during sleep," said Roberto Fernández Galán assistant professor of electrical engineering and computer science and senior author of the study. "But we don't know if this abnormality compensates for epilepsy, coincides with the disease or is part of the etiology."

Specifically, the parasympathetic--or "rest-and-digest"--nervous system modulates breathing and slows the heart rate of sleeping children with epilepsy substantially more than in healthy children.

To their surprise, the researchers also found that several children who had been diagnosed as neurologically normal--but had similar strong modulation and low heart rates--were later diagnosed with epilepsy.

The discovery suggests that changes in the parasympathetic tone precede the onset of epilepsy in children.

The Research

Galán worked with Case Western Reserve undergraduate researcher Siddharth Sivakumar; from Case Western Reserve School of Medicine, Amalia Namath, who recently graduated with a master's degree in medical physiology; Ingrid Tuxhorn, MD, professor of pediatric neurology; and Stephen Lewis, PhD, professor of pediatrics.

The group studied the electrocardiograms of 91 children and adolescents with generalized epilepsy, and 25 neurologically normal children during 30 minutes of stage 2, or light, sleep. No subjects were suffering from a seizure during these intervals.

The researchers found that respiratory sinus arrhythmia--the increase in heart rate during inhalation and decrease during exhalation--was more pronounced in patients with epilepsy, and that their heart rate also was significantly lower.

Those changes are consistent with increased firing of the vagus nerve in children with epilepsy, compared to those without, the researchers suggest. The vagus nerve is the main trunk of the parasympathetic nervous system. The more the vagus fires, the more it slows the heart, especially during exhalation.

The researchers found no difference in blood pressure between the two groups of children, indicating the sympathetic nervous system, which is responsible for fight-or-flight responses, is not involved.

All of the children in the study had electroencephalograms monitoring their brain activity during the 30-minute periods of sleep. There was no abnormal activity found there, either.

Ramifications

Galán said that by further defining differences in the respiratory sinus arrhythmia between children with and without epileptics, they may be able to identify thresholds, or biomarkers, to diagnose those with epilepsy or at risk of developing the disease.

The researchers say the findings also raise the possibility that medicines that help control the autonomic nervous system may help control epilepsy.

Other researchers, including Kenneth Loparo, chair of the Department of Electrical Engineering and Computer Science at Case Western Reserve, and Samden Lhatoo, MD, professor of neurology at Case Western Reserve School of Medicine, have shown that autonomic dysfunction may play a role in SUDEP, the most common cause of death among people with uncontrollable epilepsy.

"This may be a key contributing factor," Sivakumar said. "The heart rate and breathing decline dramatically after a seizure. If they are already low, and are then lowered further, that may cause a child to go a minute or more without a breath or pulse."

Severe epilepsy in adults is sometimes treated by implanting an electrode to stimulate the vagus nerve, which, in turn, stimulates the brain. The treatment provides some relief for about 30 percent of patients, but other patients get no benefit and some find that their conditions worsen.

"In light of our new findings, we call for caution," Galán said. "The implant may be slowing the heart during sleep even more."
-end-
The study was funded by The Hartwell Foundation. The researchers are now seeking financial support to broaden their study to adults, to include patients from several hospitals across the United States and to begin investigating whether medicines that modulate the parasympathetic system may be used to treat epilepsy.

Case Western Reserve University

Related Epilepsy Articles:

Antibodies in the brain trigger epilepsy
Certain forms of epilepsy are accompanied by inflammation of important brain regions.
Breaching the brain's defense causes epilepsy
Epileptic seizures can happen to anyone. But how do they occur and what initiates such a rapid response?
Using connectomics to understand epilepsy
Abnormalities in structural brain networks and how brain regions communicate may underlie a variety of disorders, including epilepsy, which is one focus of a two-part Special Issue on the Brain Connectome in Brain Connectivity, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers.
Epilepsy: Triangular relationship in the brain
When an epileptic seizure occurs in the brain, the nerve cells lose their usual pattern and fire in a very fast rhythm.
How concussions may lead to epilepsy
Researchers have identified a cellular response to repeated concussions that may contribute to seizures in mice like those observed following traumatic brain injury in humans.
Understanding epilepsy in pediatric tumors
A KAIST research team led by Professor Jeong Ho Lee of the Graduate School of Medical Science and Engineering has recently identified a neuronal BRAF somatic mutation that causes intrinsic epileptogenicity in pediatric brain tumors.
Can medical marijuana help treat intractable epilepsy?
A new British Journal of Clinical Pharmacology review examines the potential of medicinal cannabis -- or medical marijuana -- for helping patients with intractable epilepsy, in which seizures fail to come under control with standard anticonvulsant treatment.
Fertility rates no different for women with epilepsy
'Myth-busting' study among women with no history of infertility finds that those with epilepsy are just as likely to become pregnant as those without.
Do women with epilepsy have similar likelihood of pregnancy?
Women with epilepsy without a history of infertility or related disorders who wanted to become pregnant were about as likely as their peers without epilepsy to become pregnant.
Hope for new treatment of severe epilepsy
Researchers at Lund University in Sweden believe they have found a method that in the future could help people suffering from epilepsy so severe that all current treatment is ineffective.
More Epilepsy News and Epilepsy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.