Nav: Home

Gene protects against toxic byproducts of photosynthesis, helping plants to 'breathe'

March 09, 2016

A research team led by Associate Professor Miyake Chikahiro and PhD student Takagi Daisuke from the Kobe University Graduate School of Agricultural Science have discovered that a certain gene within plants suppresses the toxic molecules formed as byproducts of photosynthesis. These findings have potential applications for plant growth in stressful environments. The research was published on Feb. 16, 2016 in the online version of Plant Physiology.

Photosynthesis is an essential biological process for plants, but it is also a dangerous one. When plants absorb energy from sunlight to photosynthesize, the "extra" energy reacts with oxygen in plant cells to produce harmful reactive oxygen species (ROS). These molecules break down important structures across the plant, and in the process they also produce an extremely toxic reactive carbonyl species (RCS).

Luckily, plants have genes that act as enzymes to neutralize these toxic species. Professor Miyake's research group set out to determine the exact function of one of these genes, known as "AOR" (alkenal/one oxidoreductase). The researchers removed the gene from some plants and compared them to wild species. They discovered that plants without the AOR gene were significantly smaller and lighter than plants with the gene when exposed to a standard 24-hour day/night cycle. However, when plants were constantly exposed to sunlight there was no significant difference in growth between them. This led to an unexpected discovery: the AOR gene has no effect on the daytime process of photosynthesis, but instead protects nighttime respiration.

Plants can only photosynthesize during daylight hours, converting carbon dioxide into starch. During the dark hours plants "breathe", using oxygen to convert the starch into glucose. When the researchers examined the plants which lacked a functioning AOR gene, they found leftover starch in their leaves the next morning. Without a functioning AOR gene, the toxic molecules that had accumulated during the daytime prevented the plants from respiring properly, stunting their growth. However, the plants with an AOR gene did not have leftover starch, and reached a normal size and weight.

"Plants can only function at 20% of their full potential because they are limited by environmental factors such as lack of water", said Professor Miyake. "These findings show that the AOR gene is essential for plants to survive the effects of global warming. We will continue to research the strengths and weaknesses of plants in the face of environmental stress, and I hope to use our findings to overcome environmental limitations."

Kobe University

Related Photosynthesis Articles:

Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.
Just how much does enhancing photosynthesis improve crop yield?
In the next two decades, crop yields need to increase dramatically to feed the growing global population.
Algal library lends insights into genes for photosynthesis
To identify genes involved in photosynthesis, researchers built a library containing thousands of single-celled algae, each with a different gene mutation.
New molecular blueprint advances our understanding of photosynthesis
Researchers at Lawrence Berkeley National Laboratory have used one of the most advanced microscopes in the world to reveal the structure of a large protein complex crucial to photosynthesis, the process by which plants convert sunlight into cellular energy.
How bacteria build hyper-efficient photosynthesis machines
Researchers facing a future with a larger population and more uncertain climate are looking for ways to improve crop yields, and they're looking to photosynthetic bacteria for engineering solutions.
More Photosynthesis News and Photosynthesis Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...