We've got your number: Tracing the source of invasive Japanese beetles

March 09, 2016

A technique developed by Northern Arizona University researchers can help invasive pest managers make more informed decisions about how to control Japanese beetles and the extensive damage they cause.

Researchers led by Bruce Hungate, director of the Center for Ecosystem Science and Society, used the stable hydrogen isotope signature in body tissue of invasive Japanese beetles to model the source of origin and time since arrival of beetles trapped at Portland International Airport over the past decade.

The results, published in PLOS ONE, can help answer the question of whether a beetle detected in new territory is new or part of an established population in the area. New arrivals point to more control at the source; localized beetles point to more control at the destination.

"Knowing the timing of arrival of these invasive organisms can be really helpful in managing them, and the stable isotope gives us a very useful chemical clock," Hungate said. "It's a powerful addition to the tools we have to understand where these organisms are from and the dynamics of their movements."

Japanese beetles wreak havoc by feeding on over 300 plants, contributing to the billions of dollars per year in economic costs caused by invasive species. Japanese beetles are well established in the eastern United States. Control efforts at airports on both coasts aim to keep the beetles from spreading westward, with only partial success.

The study used isotopes as a sleuthing tool. One of the heavier isotopes of hydrogen, deuterium, is rare but stable, meaning it does not decay. The amount of this isotope--its signature--in local water sources varies from place to place, and has been found to match the signature in tissues of plants and animals consuming the local water.

Researchers found a close relationship between the stable hydrogen isotope signature in beetle tissue and local water from 71 sites around the country. Combined with the signatures of water at known sources of Japanese beetles in the East, these results provide a sort of "geographic fingerprint" to determine where the beetle is from.

To model time since arrival, researchers transplanted Eastern beetles to a Western environment and measured the signature change over time. Changes began after two weeks and the signature took about five weeks to equilibrate to the new environment. This offered a new clue: beetles trapped at points of entry to an area, like airports, are likely to be new arrivals if their signature is distinctly different from the signature in local water.

The transplant experiment also explored whether the signature from the hard, chitin-rich tissue of the beetle's wing covers changed more slowly than the signature in soft tissue, potentially preserving clues about the beetle's origin longer. They found that signatures did shift more slowly in hard tissue, adding it as another potential tool.

The resulting model pointed to the southeastern United States as the origin of beetles trapped at the Portland International Airport. And beetles trapped after 2011 appeared to have been more recent arrivals than beetles trapped in earlier years, suggesting that efforts to prevent beetles from establishing viable populations at the Portland International Airport seemed to be working.

Northern Arizona University

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.