Nav: Home

Single atom memory: The world's smallest storage medium

March 09, 2017

One bit of digital information can now be successfully stored in an individual atom, according to a study just published in Nature. Current commercially-available magnetic memory devices require approximately one million atoms to do the same. Andreas Heinrich, newly appointed Director of the Center for Quantum Nanoscience, within the Institute of Basic Science (IBS, South Korea), led the research effort that made this discovery at IBM Almaden Research Center (USA). This result is a breakthrough in the miniaturization of storage media and has the potential to serve as a basis for quantum computing.

Disks coated with a magnetized layer of metal allow our computers to store files in the form of bits, each with the value of either 1 or 0. A certain direction of magnetization corresponds to the 0 bit, the other direction to the 1 bit. While at the moment small areas of the disk, of around a million atom, correspond to each digital bit of information, this research went way beyond this and utilized the smallest amount of matter usable for this purpose: one atom.

In this study, scientists worked with a tool, called Scanning Tunneling Microscope (STM), which has a special tip that enables the user to view and move individual atoms, as well as to apply a pulse of electrical current to them. They used this electric pulse to change the direction of magnetization of individual holmium atoms. By doing that, the team could write a memory of either 1 or 0 in a single holmium atom as well as swap the two.

A quantum sensor, designed by Heinrich's team and currently unique worldwide, was used to read the memory stored in the holium atom. It consists of an iron atom placed next to the holmium atom. Using this technique, as well as another one, called tunnel magnetoresistance, the researchers could observe that holmium maintains the same magnetic state stably over several hours.

Then, when Heinrich's team of researchers tried to use two holmium atoms instead of one, they made another surprising discovery. Placing holmium atoms even one nanometer apart did not impact their ability to store information individually. This came as a surprise, since it was expected that the magnetic field from one atom would impact its neighbor. To put this scale into perspective, if a nanometer were blown up to the diameter of a typical human hair, the hair would have a diameter equivalent to the length of a school bus in comparison.

In this way, the scientists could build a two bit device with four possible types of memory: 1-1, 0-0, 1-0 and 0-1 clearly distinguished by the iron sensor.

Moore's Law predicted that the amount of data that can be stored on a microchip would double every 18 months and indeed this happened for decades. The last model electronic devices are always smaller and more powerful than the previous one. However, as devices becomes smaller and smaller, since atoms are so close to each other, new interfering quantum properties begin to manifest and cause problems. The impossibility of keeping up with further miniaturization, brought experts to talk about the death of Moore's Law.

Interestingly, holmium atoms seem to escape this fate, for still unknown reasons. "There are no quantum mechanical effects between atoms of holmium. Now we want to know why," points out Heinrich. Holmium atoms can be arranged very closely together, so the storage density using this single-atom technique could be very high. He continues: "We have opened up new possibilities for quantum nanoscience by controlling individual atoms precisely as we want. This research may spur innovation in commercial storage media that will expand the possibilities of miniaturizing data storage."

Heinrich is one of the few in the world using this tool to measure and change the properties of individual atoms. He plans to significantly expand on this research at his newly created IBS research center, located at Ewha Womans University in Seoul.
-end-


Institute for Basic Science

Related Memory Articles:

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.
VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.
The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.
How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.
A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.
Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.
Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.
An immunological memory in the brain
Inflammatory reactions can change the brain's immune cells in the long term -- meaning that these cells have an 'immunological memory.' This memory may influence the progression of neurological disorders that occur later in life, and is therefore a previously unknown factor that could influence the severity of these diseases.
Anxiety can help your memory
Anxiety can help people to remember things, a study from the University of Waterloo has found.
Pores with a memory
Whether for separation processes, photovoltaics, catalysis, or electronics, porous polymer membranes are needed in many fields.
More Memory News and Memory Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.