Nav: Home

'Recycling protein' shown to affect learning and memory in mice

March 09, 2017

Learning and memory depend on cells' ability to strengthen and weaken circuits in the brain. Now, researchers at Johns Hopkins Medicine report that a protein involved in recycling other cell proteins plays an important role in this process.

Removing this protein reduced mice's ability to learn and recall information. "We see deficits in learning tasks," says Richard Huganir, Ph.D., professor and director of the neuroscience department at the Johns Hopkins University School of Medicine.

The team also found mutations in the gene that produces the recycling protein in a few patients with intellectual disability, and those genetic errors affected neural connections when introduced into mouse brain cells. The results, reported in the March 22 issue of Neuron, suggest that the protein could be a potential target for drugs to treat cognitive disorders such as intellectual disability and autism, Huganir says.

The protein, known as GRASP1, short for GRIP-associated protein 1, was previously shown to help recycle certain protein complexes that act as chemical signal receptors in the brain. These receptors sit on the edges of neurons, and each cell continually shuttles them between its interior and its surface. By adjusting the balance between adding and removing available receptors, the cell fortifies or weakens the neural connections required for learning and memory.

Huganir says most previous research on GRASP1 was conducted in laboratory-grown cells, not in animals, while the new study was designed to find out what the protein does at the behavioral level in a living animal.

To investigate, his team genetically engineered so-called knockout mice that lacked GRASP1 and recorded electrical currents from the animals' synapses, the interfaces between neurons across which brain chemical signals are transmitted. In mice without GRASP1, neurons appeared to spontaneously fire an average of 28 percent less frequently than in normal mice, suggesting that they had fewer synaptic connections.

Next, Huganir's team counted protrusions on the mice's brain cells called spines, which have synapses at their tips. The average density of spines in knockout mice was 15 percent lower than in normal mice, perhaps because defects in receptor recycling had caused spines to be "pruned" or retracted. Neurons from mice without GRASP1 also showed weaker long-term potentiation, a measure of synapse strengthening, in response to electrical stimulation.

The team then tested the mice's learning and memory. First, the animals were placed in a tub of milky water and trained to locate a hidden platform. The normal mice needed five training sessions to quickly find the platform in the opaque water, while the knockout mice required seven; the next day, the normal mice spent more time swimming in that location than in other parts of the tub, but the knockout mice seemed to swim around randomly.

Second, the mice were put in a box with light and dark chambers and given a slight shock when they entered the dark area. The next day, the normal mice hesitated for an average of about four minutes before crossing into the dark chamber, while the knockout mice paused for less than two minutes. "Their memory was not quite as robust," Huganir says.

To assess the importance of GRASP1 in humans, the team identified two mutations in the gene that produce the protein in three young male patients with intellectual disabilities, who had an IQ of less than 70 and were diagnosed at an early age. When the researchers replaced the rodent version of the normal GRASP1 gene with the two mutated mouse versions in mouse brain cells, the spine density decreased by 11 to 16 percent, and the long-term potentiation response disappeared.

Huganir speculates that defects in GRASP1 might cause learning and memory problems because the cells aren't efficiently recycling receptors back to the surface. Normally, GRASP1 attaches to traveling cellular compartments called vesicles, which carry the receptors, and somehow helps receptors get transferred from ingoing to outgoing vesicles.

When Huganir's team introduced GRASP1 mutations into mouse cells, receptors accumulated inside recycling compartments instead of being shuttled to the surface.

Huganir cautions that the results don't prove that the GRASP1 mutations caused the patients' intellectual disability. But the study may encourage geneticists to start testing other patients for mutations in this gene, he says. If more cases are found, researchers may be able to design drugs that target the pathway. Huganir's team is now studying GRASP1's role in the receptor recycling process in more detail.
Other authors on the paper include Shu-Ling Chiu, Graham Hugh Diering, Chih-Ming Chen and Tao Wang of The Johns Hopkins University; Bing Ye of the University of Michigan, Ann Arbor; Kogo Takamiya of the University of Miyazaki in Japan; Yuwu Jiang of Peking University First Hospital in Beijing; Tejasvi Niranjan of the University of Illinois College of Medicine at Urbana-Champaign; and Charles E. Schwartz of the Greenwood Genetic Center in South Carolina.

This study was funded by the National Institute of Neurological Disorders and Stroke (grant numbers NS36715 and NS073854), the National Institute of Child Health and Human Development (grant number HD052680), and the Brain and Behavior Research Foundation (grant number 19607).

Johns Hopkins Medicine

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...