Nav: Home

Cross-species jumps may play unexpectedly big role in virus evolution

March 09, 2017

On occasion, a virus may jump from one host species to another and adapt to the new host. Such cross-species transmission happens more often than expected, according to new research published in PLOS Pathogens, and it may play a much bigger role in virus evolution than previously thought.

Understanding how viruses evolve and how often they jump to new hosts is important for studying emerging viral diseases. Scientists have hypothesized that viruses usually co-diverge with their hosts, forming new viral species as their hosts evolve into new species. It has been assumed that cross-species jumps are relatively rare and contribute less to virus evolution.

To better understand how viruses evolve, Jemma Geoghegan of the University of Sydney, Australia, and colleagues compared the evolutionary histories of viruses and host species. Previous studies had focused on narrow groups of viruses; for a broader picture, Geoghegan's team studied 19 virus families that infect a variety of hosts, including mammals, birds, reptiles, amphibians, fish, plants, and insects.

The researchers began with branching "tree" diagrams that illustrated the evolutionary history of each virus family and its host species. Like family trees, these evolutionary trees trace the lineage of species back through common ancestors that later evolved into new species.

The scientists then used a previously developed method to compare the evolutionary trees of viruses and hosts. The method measures similarity between trees; co-divergence results in host and virus trees with similar branching patterns, as the virus evolves alongside the host. Meanwhile, cross-species jumps result in dissimilar host and virus trees, as new viruses evolve and jump from host to host.

The scientists found that cross-species transmission has played a central role in evolution for all 19 virus families, while co-divergence is relatively rare. Cross-species jumps were especially frequent in virus families whose genetic material is encoded in RNA rather than DNA. The findings also revealed which virus families may be more likely to jump hosts and evolve to infect new species.

'An important implication from our work is that the more new viruses we discover, then the more examples of species jumping we are likely to see' said project leader Professor Edward Holmes from the University of Sydney. 'Jumping hosts is the way many RNA viruses live their life' he continued.

This research was performed at the level of virus families, and not for individual viral species. Further studies with larger datasets could help confirm the findings and provide further insight into virus evolution.
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Pathogens: http://dx.doi.org/10.1371/journal.ppat.1006215

Citation: Geoghegan JL, Duchêne S, Holmes EC (2017) Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. PLoS Pathog 13(2): e1006215. doi:10.1371/journal.ppat.1006215

Funding: ECH is funded by grant GNT1037231 from the National Health and Medical Research Council, Australia (https://www.nhmrc.gov.au/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Evolution Articles:

Artificial evolution of an industry
A research team has taken a deep dive into the newly emerging domain of 'forward-looking' business strategies that show firms have far more ability to actively influence the future of their markets than once thought.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.