Nav: Home

RNA and longevity: Discovering the mechanisms behind aging

March 09, 2017

The vigors of youth and the greener pastures of yesteryears. Some might refer to these and other similar clichés as nothing more than rose-tinted literations of the past; a cognitive side effect of life. Romanticizing collective memories aside, however, it would be a challenge to find anyone who could argue against the physical degradations that accompany aging. One needs only to search for 'photos of aging' to realize that such yearnings are perhaps nothing more than ourselves giving form to the personal struggle with the byproducts of life.

What if, though, human beings could harness the power to control aging? Scientists have long strived to understand the aging process in order to combat age-related diseases and attain longevity. However, a complete picture of the inherently complex underpinnings remains ever elusive.

Research conducted by Professor Seung-Jae V. Lee's team from the Department of Life Sciences at Pohang University of Science and Technology in collaboration with Professor Hong Gil Nam from the Center for Plant Aging Research at Institute for Basic Science has made great contributions to solving this mystery by showing that RNA quality control affects aging. This achievement has been published in the world-renowned Nature Communications.

DNA, RNA, and proteins carry the genetic instructions within all known living organisms. Existing research has collectively shown that organisms with long lifespans tend to have more stringent DNA and protein quality control. In other words, deterioration of DNA and protein quality control is centrally correlated with aging and age-related diseases. However, the role of the RNA quality control in aging remained almost unexplored.

The research team concentrated on a specific RNA quality control mechanism called nonsense-mediated mRNA decay (NMD), a key pathway which degrades both abnormal as well as some normal RNAs. The team has successfully shown that NMD is crucial for longevity in the roundworm called C. elegans, a popularly used animal for aging research. They first discovered that NMD activity decreases during aging. The team then discovered that enhanced NMD underlies the longevity of famous C. elegans strains called daf-2 mutants, which have reduced insulin hormone signaling.

Since the main role of NMD is degradation of its target mRNAs, the team focused on mRNAs that were downregulated in daf-2 mutants. Their research showed substantially decreased levels of a gene yars-2, an NMD target, are at least partially responsible for long lifespan in daf-2 mutants. In other words, research data collectively suggest that NMD-mediated RNA quality control is critical for longevity in C. elegans.

Professor Lee anticipates that the research team's leading discovery of the causal relationship between RNA quality control and longevity will play a significant role in shedding light on the mechanisms behind aging and eventually contribute to curing and even preventing age-related diseases.
-end-
This work was supported by a grant of the Korean Health Technology R&D Project, Ministry of Health and Welfare (HI14C2337) and by POSCO Green Science Project to S.-J.V.L., by Institute for Basic Science (IBS-R013-D1) to H.G.N. and by Korea Brain Research basic research program funded by the Ministry of Science, ICT & Future Planning to C.M.H.

Pohang University of Science & Technology (POSTECH)

Related Aging Articles:

Brain development and aging
The brain is a complex organ -- a network of nerve cells, or neurons, producing thought, memory, action, and feeling.
Aging gracefully in the rainforest
In an article that appears in the current issue of Evolutionary Anthropology, researchers synthesize over 15 years of theoretical and empirical findings from long-term study of the Tsimane forager-farmers.
Reversing aging now possible!
DGIST's research team identified the mechanism of reversible recovery of aging cells by inducing lysosomal activation.
Brain-aging gene discovered
Researchers at Columbia University Medical Center have discovered a common genetic variant that greatly affects normal brain aging in older adults.
Aging can be good for you (if you're a yeast)
It's a cheering thought for anyone heading towards their golden years.
More Aging News and Aging Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.