Nav: Home

Hard choices? Ask your brain's dopamine

March 09, 2017

LA JOLLA -- (March 9, 2017) Say you're reaching for the fruit cup at a buffet, but at the last second you switch gears and grab a cupcake instead. Emotionally, your decision is a complex stew of guilt and mouth-watering anticipation. But physically it's a simple shift: instead of moving left, your hand went right. Such split-second changes interest neuroscientists because they play a major role in diseases that involve problems with selecting an action, like Parkinson's and drug addiction.

In the March 9, 2017 online publication of the journal Neuron, scientists at the Salk Institute report that the concentration of a brain chemical called dopamine governs decisions about actions so precisely that measuring the level right before a decision allows researchers to accurately predict the outcome. Additionally, the scientists found that changing the dopamine level is sufficient to alter upcoming choice. The work may open new avenues for treating disorders both in cases where a person cannot select a movement to initiate, like Parkinson's disease, as well as those in which someone cannot stop repetitive actions, such as obsessive-compulsive disorder (OCD) or drug addiction.

"Because we cannot do more than one thing at a time, the brain is constantly making decisions about what to do next," says Xin Jin, an assistant professor in Salk's Molecular Neurobiology Laboratory and the paper's senior author. "In most cases our brain controls these decisions at a higher level than talking directly to particular muscles, and that is what my lab mostly wants to understand better."

When we decide to perform a voluntary action, like tying our shoelaces, the outer part of our brain (the cortex) sends a signal to a deeper structure called the striatum, which receives dopamine to orchestrate the sequence of events: bending down, grabbing the laces, tying the knots. Neurodegenerative diseases like Parkinson's damage the dopamine-releasing neurons, impairing a person's ability to execute a series of commands. For example, if you ask Parkinson's patients to draw a V shape, they might draw the line going down just fine or the line going up just fine. But they have major difficulty making the switch from one direction to the other, and spend much longer at the transition. Before researchers can develop targeted therapies for such diseases, they need to understand exactly what the function of dopamine is at a fundamental neurological level in normal brains.

Jin's team designed a study in which mice chose between pressing one of two levers to get a sugary treat. The levers were on the right and left side of a custom-built chamber, with the treat dispenser in the middle. The levers retracted from the chamber at the start of each trial and reappeared after either two seconds or eight seconds. The mice quickly learned that when the levers reappeared after the shorter time, pressing the left lever yielded a treat. When they reappeared after the longer time, pressing the right lever resulted in a treat. Thus, the two sides represented a simplified two-choice situation for the mice--they moved to the left side of the chamber initially, but if the levers didn't reappear within a certain amount of time, the mice shifted to the right side based on an internal decision.

"This particular design allows us to ask a unique question about what happens in the brain during this mental and physical switch from one choice to another," says Hao Li, a Salk research associate and the paper's co-first author.

As the mice performed the trials, the researchers used a technique called fast-scan cyclic voltammetry to measure dopamine concentration in the animals' brains via embedded electrodes much finer than a human hair. The technique allows for very fine-time-scale measurement (in this study, sampling occurred 10 times per second) and therefore can indicate rapid changes in brain chemistry. The voltammetry results showed that fluctuations in brain dopamine level were tightly associated with the animal's decision. The scientists were actually able to accurately predict the animal's upcoming choice of lever based on dopamine concentration alone.

Interestingly, other mice that got a treat by pressing either lever (so removing the element of choice) experienced a dopamine increase as trials got under way, but in contrast their levels remained above baseline (didn't fluctuate below baseline) the entire time, indicating dopamine's evolving role when a choice is involved.

"We are very excited by these findings because they indicate that dopamine could also be involved in ongoing decision, beyond its well-known role in learning," adds the paper's co-first author, Christopher Howard, a Salk research collaborator.

To verify that dopamine level caused the choice change, rather than just being associated with it, the team used genetic engineering and molecular tools--including activating or inhibiting neurons with light in a technique called optogenetics--to manipulate the animals' brain dopamine levels in real time. They found they were able to bidirectionally switch mice from one choice of lever to the other by increasing or decreasing dopamine levels.

Jin says these results suggest that dynamically changing dopamine levels are associated with the ongoing selection of actions. "We think that if we could restore the appropriate dopamine dynamics--in Parkinson's disease, OCD and drug addiction--people might have better control of their behavior. This is an important step in understanding how to accomplish that."
-end-
The work was funded by the National Institutes of Health, The Dana Foundation, the Lawrence Ellison Foundation and the Whitehall Foundation.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Salk Institute

Related Dopamine Articles:

How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.
Novelty speeds up learning thanks to dopamine activation
Brain scientists led by Sebastian Haesler (NERF, empowered by IMEC, KU Leuven and VIB) have identified a causal mechanism of how novel stimuli promote learning.
Evidence in mice that childhood asthma is influenced by the neurotransmitter dopamine
Neurons that produce the neurotransmitter dopamine communicate with T cells to enhance allergic inflammation in the lungs of young mice but not older mice, researchers report Nov.
Chronic adversity dampens dopamine production
People exposed to a lifetime of psychosocial adversity may have an impaired ability to produce the dopamine levels needed for coping with acutely stressful situations.
Blocking dopamine weakens effects of cocaine
Blocking dopamine receptors in different regions of the amygdala reduces drug seeking and taking behavior with varying longevity, according to research in rats published in eNeuro.
How chronic inflammation may drive down dopamine and motivation
A new computational method will allow scientists to measure the effects of chronic inflammation on energy availability and effort-based decision-making.
Dopamine regulates sex differences in worms
Dopamine is responsible for sex-specific variations in common behaviors, finds a study of worm movements published in JNeurosci.
Dopamine conducts prefrontal cortex ensembles
New research in rodents reveals for the first time how dopamine changes the function of the brain's prefrontal cortex.
Dopamine modulates reward experiences elicited by music
New study in Proceedings of the National Academy of Science reveals causal link between dopamine and human reward response to music listening.
Dopamine modulates the reward experiences elicited by music
Researchers from IDIBELL-UB, the Sant Pau Hospital and the McGill University published a new study in PNAS that shows for the first time a causal link between the dopaminergic system and enjoying music.
More Dopamine News and Dopamine Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.