Nav: Home

Molecules form gels to help cells sense and respond to stress

March 09, 2017

A specific protein inside cells senses threatening changes in its environment, such as heat or starvation, and triggers an adaptive response to help the cell continue to function and grow under stressful conditions, according to a new study by scientists from the University of Chicago.

When cells experience stress, such as heat or starvation, groups of proteins and RNA molecules inside the cells form clumps. These clumps have long been thought to be a sign of cellular damage, piles of melted, dysfunctional molecules that need to be discarded. This matches with observations that in many human neurological diseases, such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis (ALS), clumps of proteins accumulate in dying nerve cells.

In the new study, published Mar. 9, 2017 in the journal Cell, D. Allan Drummond, PhD, and colleagues show that a molecule called poly(A)-binding protein (Pab1) forms clumps in response to stressful conditions inside budding yeast cells, and when only the protein is isolated in a test tube. What look like clumps are instead a hydrogel--like a jelly or toothpaste--which under the microscope appear as round droplets. Most importantly, when the researchers interfered with the formation of this stress-associated hydrogel in living cells, those cells couldn't cope with stress. Hydrogel formation, in other words, is not damage, but an adaptive response.

"It appears to be an organized emergency procedure, like a fire alarm when people move away from their normal jobs and collect in large groups at specific places, unhurt and out of the way of danger," said Drummond, who is an assistant professor in the Department of Biochemistry and Molecular Biology and of Human Genetics at UChicago. "When these molecules gather into large groups--forming a gel--they're not just doing it for protection, but to do crucial work, like calling firefighters and paramedics."

The study is the result of a five-year collaboration between Drummond and Tobin Sosnick, PhD, Chair of the Department of Biochemistry and Molecular Biology, and spearheaded by two graduate students, biophysicist Joshua Riback and biochemist Chris Katanski.

In recent years, a surge of research has focused on the formation of protein liquids and hydrogels as a way in which cells organize and remodel themselves. In one process, called "phase separation," two mixed liquids separate, like oil and vinegar in a salad dressing. To get phase separation to occur, previous studies generally used extreme test-tube conditions (high concentrations of the protein or additives). The new UChicago study showed that normal levels of Pab1 could phase-separate--if confronted with temperature or pH changes that accompany cell stress.

"Surprisingly, we don't actually know how these cells sense that it's gotten hotter," Drummond said. Animals use temperature-sensing nerve channels, but yeast cells lack those channels. "The temperature-sensitivity of this phase separation process is much greater than any other molecular temperature-sensing system that's been described," Drummond said. "We suspect that this kind of molecular mechanism for cells to sense thermal and other environmental changes will be widespread."

Drummond and his colleagues are continuing to study how this phase separation process helps cells survive stress. In the paper, the researchers suggest this may be because when Pab1 releases specific messenger RNAs during stress response, this triggers translation of those mRNAs to encode new, stress-responsive proteins that help the cells grow.

The researchers are also studying how the hydrogel droplets of Pab1 get dispersed back into individual molecules. Understanding the reversal of phase separation could provide clues to how the process can go awry. In neurodegenerative disease like Alzheimer's or ALS, for example, the presence of protein clumps in nerve cells may be a sign that the phase separation process began as a protective response to stress, but something went wrong and prevented the cells from returning to their normal state.

"This is the first example of those clumps being useful," Drummond said. "These studies get at the broader questions of how cells use the reversible formation of massive groups of molecules to carry out important functions, and how these good clumping processes might go haywire, resulting in diseases where clumping has run amok."
-end-
The study, "Stress­triggered phase separation is an adaptive, evolutionarily tuned response," was supported by the Pew Charitable Trusts, the National Institutes of Health, the Protein Translation Research Network, the National Science Foundation, the U.S. Army Research Office, and the Department of Energy. Additional authors include Jamie Kear-Scott, Evgeny Pilipenko, and Alexandra Rojek, all from the University of Chicago.

About the University of Chicago Medicine

The University of Chicago Medicine & Biological Sciences is one of the nation's leading academic medical institutions. It comprises the Pritzker School of Medicine, a top 10 medical school in the nation; the University of Chicago Biomedical Sciences Division; and the University of Chicago Medical Center, which recently opened the Center for Care and Discovery, a $700 million specialty medical facility. Twelve Nobel Prize winners in physiology or medicine have been affiliated with the University of Chicago Medicine.

Visit our research blog at sciencelife.uchospitals.edu and our newsroom at uchospitals.edu/news.

Twitter @UChicagoMed, @ScienceLife
Facebook.com/UChicagoMed

University of Chicago Medical Center

Related Stress Articles:

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.
How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.
Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.
Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.
Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.
Maternal stress at conception linked to children's stress response at age 11
A new study published in the Journal of Developmental Origins of Health and Disease finds that mothers' stress levels at the moment they conceive their children are linked to the way children respond to life challenges at age 11.
A new way to see stress -- using supercomputers
Supercomputer simulations show that at the atomic level, material stress doesn't behave symmetrically.
Beware of evening stress
Stressful events in the evening release less of the body's stress hormones than those that happen in the morning, suggesting possible vulnerability to stress in the evening.
How plants cope with stress
With climate change comes drought, and with drought comes higher salt concentrations in the soil.
Gene which decreases risk of social network-related stress, increases finance-related stress risk
Researchers have discovered that the same gene which increases your risk of depression following financial stress as you grow older also reduces your chance of depression associated with friendship and relationships stresses when young- your social network.
More Stress News and Stress Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.