Nav: Home

Rabbits' detached retina 'glued' with new hydrogel

March 09, 2017

A newly developed elastic gel administered in liquid form and shown to turn jellylike within minutes after injection into rabbits' eyes to replace the clear gelatinous fluid inside their eyeballs, may help pave the way for new eye surgery techniques, says an international team of researchers led by Japanese scientists.

Various retinal diseases, such as retinal detachment, require surgery to replace the vitreous, the gel-like substance that fills the space between the retina and the lens in the eye. While gas and silicone oil have conventionally been used as substitutes for vitreous, these materials do not mix well with water and are not suited for long-term use. In contrast, hydrogels--elastic gels with high water content--are promising materials because they are composed of substances similar to those found in soft tissues in our body and mainly consist of water.

"The downside of conventional hydrogels is that, after months and years, they start to absorb water and swell, irritate and exert pressure on the surrounding tissues, eventually causing damage," explains Associate Professor Tadamasa Sakai of the University of Tokyo's Graduate School of Engineering, a bioengineer who co-authored the study. "We knew that swelling could be avoided by lowering the amount of polymers in the hydrogel, but lowering the concentration too much would require hours for the gels to form, thereby making them impractical for surgery."

Sakai and his collaborators at the University of Tokyo and the University of Tsukuba developed a hydrogel with a low polymer concentration that could be introduced into a rabbit's eye as a liquid and capable of gelling within 10 minutes after injection to replace the vitreous. The scientists were able to accelerate the gelation rate by breaking the reaction into two steps: First they mixed two types of four-armed polymers to create highly branched polymer clusters in liquid; then the polymer clusters were prompted to aggregate once they were injected into the eyes.

The swelling pressures of hydrogel-treated rabbits exhibited no significant differences from those treated only with salt water. In addition, the hydrogel-implanted rabbits showed no signs of side effects, even after 410 days of treatment, suggesting that the new material is not rejected by the body and safe.

In a separate experiment, the scientists showed that rabbits affected with retinal detachment recovered once they were treated with the new hydrogels.

"Hydrogels are promising biomaterials, but their physical properties have been difficult to control. We wanted to show that these difficulties can be overcome by designing molecular reactions and I think we've been successful," comments Sakai.

While the efficacy and safety of this new hydrogel still need to be tested in humans, the researchers believe that it would free patients from having to keep their head stabilized in a face-down position after vitreous surgery, a procedure necessary for the injected silicone oil or gas bubbles to push the detached retina.

The hydrogels' properties may also make them suitable for broader applications to treat a wide range of conditions as a space-filling gel to replace soft tissues damaged by trauma, tumors and degenerative diseases
Journal article:

Kaori Hayashi, Fumiki Okamoto, Sujin Hoshi, Takuya Katashima, Denise Zujur, Xiang Li, Mitsuhiro Shibayama, Elliot P. Gilbert, Ung-il Chung, Shinsuke Ohba, Tetsuro Oshika, Takamasa Sakai, Fast-forming hydrogels with ultralow polymeric component as an artificial vitreous body, Nature Biomedical Engineering, Online edition, March 2017

Collaborating institutions:

University of Tsukuba
Osaka University
Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation


Graduate School of Engineering, The University of Tokyo
Sakai/Chung Laboratory, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo

Research contact:

Takamasa Sakai, Ph.D.
Associate Professor, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo

Press officer contact:

Name: Yayoi Miyagawa
Public Relations Office, Graduate School of Engineering, The University of Tokyo
Address: 7-3-1 Hongo,
Bunkyo-ku, Tokyo, 113-8656
Tel: +81-3-5841-1790
Fax: +81-3-5841-0529


This work was supported by the Japan Society for the Promotion of Science (JSPS) through Grants-in-Aid for the Graduate Program for Leaders in Life Innovation (GPLLI), the International Core Research Center for Nanobio, Core-to-Core Program A. Advanced Research Networks, and Grants-in-Aid for Young Scientists (A) Grant Number 23700555 to TS, Scientific Research (S) Grant Number 16H06312 to UC, and Scientific Research (C) Grant Number 26462631 to FO. This work was also supported by the Japan Science and Technology Agency (JST) through the S-innovation program and Center of Innovation program (to UC) and PREST (to TS).

About the University of Tokyo

The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at or follow us on Twitter at @UTokyo_News_en.

University of Tokyo

Related Hydrogel Articles:

Active droplets
Using a mixture of oil droplets and hydrogel, medical active agents can be not only precisely dosed, but also continuously administered over periods of up to several days.
First-of-its-kind hydrogel platform enables on-demand production of medicines, chemicals
A team of chemical engineers has developed a new way to produce medicines and chemicals on demand and preserve them using portable ''biofactories'' embedded in water-based gels called hydrogels.
New hydrogels wither while stem cells flourish for tissue repair
Recently, a type of biodegradable hydrogel, dubbed microporous annealed particle (MAP) hydrogel, has gained much attention for its potential to deliver stem cells for body tissue repair.
SUTD develops revolutionary reversible 4D printing with research collaborators
Researchers from SUTD worked with NTU to revolutionise 4D printing by making a 3D fabricated material change its shape and back again repeatedly without electrical components
Bio-inspired hydrogel can rapidly switch to rigid plastic
A new material that stiffens 1,800-fold when exposed to heat could protect motorcyclists and racecar drivers during accidents.
Researchers develop thermo-responsive protein hydrogel
Bio-engineering researchers have created a biocompatible, protein-based hydrogel that could serve as a drug delivery system durable enough to survive in the body for more than two weeks while providing sustained medication release.
FDA phase 1 trial shows hydrogel to repair heart is safe to inject in humans -- a first
Ventrix, a University of California San Diego spin-off company, has successfully conducted a first-in-human, FDA-approved Phase 1 clinical trial of an injectable hydrogel that aims to repair damage and restore cardiac function in heart failure patients who previously suffered a heart attack.
High-tech gel aids delivery of drugs
High tech gel aids in the delivery of drugs.
CRISPR-responsive hydrogel system offers programmable approach to smart biomaterials
Using CRISPR as the 'switcher,' hydrogels infused with DNA can be programmed to translate biological information into changes in the constituent gel material's properties, researchers say, triggering the gels to release compounds or nanoparticles, for example.
New hydrogels show promise in treating bone defects
Bioengineers and dentists from the UCLA School of Dentistry have developed a new hydrogel that is more porous and effective in promoting tissue repair and regeneration.
More Hydrogel News and Hydrogel Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at