Nav: Home

Rabbits' detached retina 'glued' with new hydrogel

March 09, 2017

A newly developed elastic gel administered in liquid form and shown to turn jellylike within minutes after injection into rabbits' eyes to replace the clear gelatinous fluid inside their eyeballs, may help pave the way for new eye surgery techniques, says an international team of researchers led by Japanese scientists.

Various retinal diseases, such as retinal detachment, require surgery to replace the vitreous, the gel-like substance that fills the space between the retina and the lens in the eye. While gas and silicone oil have conventionally been used as substitutes for vitreous, these materials do not mix well with water and are not suited for long-term use. In contrast, hydrogels--elastic gels with high water content--are promising materials because they are composed of substances similar to those found in soft tissues in our body and mainly consist of water.

"The downside of conventional hydrogels is that, after months and years, they start to absorb water and swell, irritate and exert pressure on the surrounding tissues, eventually causing damage," explains Associate Professor Tadamasa Sakai of the University of Tokyo's Graduate School of Engineering, a bioengineer who co-authored the study. "We knew that swelling could be avoided by lowering the amount of polymers in the hydrogel, but lowering the concentration too much would require hours for the gels to form, thereby making them impractical for surgery."

Sakai and his collaborators at the University of Tokyo and the University of Tsukuba developed a hydrogel with a low polymer concentration that could be introduced into a rabbit's eye as a liquid and capable of gelling within 10 minutes after injection to replace the vitreous. The scientists were able to accelerate the gelation rate by breaking the reaction into two steps: First they mixed two types of four-armed polymers to create highly branched polymer clusters in liquid; then the polymer clusters were prompted to aggregate once they were injected into the eyes.

The swelling pressures of hydrogel-treated rabbits exhibited no significant differences from those treated only with salt water. In addition, the hydrogel-implanted rabbits showed no signs of side effects, even after 410 days of treatment, suggesting that the new material is not rejected by the body and safe.

In a separate experiment, the scientists showed that rabbits affected with retinal detachment recovered once they were treated with the new hydrogels.

"Hydrogels are promising biomaterials, but their physical properties have been difficult to control. We wanted to show that these difficulties can be overcome by designing molecular reactions and I think we've been successful," comments Sakai.

While the efficacy and safety of this new hydrogel still need to be tested in humans, the researchers believe that it would free patients from having to keep their head stabilized in a face-down position after vitreous surgery, a procedure necessary for the injected silicone oil or gas bubbles to push the detached retina.

The hydrogels' properties may also make them suitable for broader applications to treat a wide range of conditions as a space-filling gel to replace soft tissues damaged by trauma, tumors and degenerative diseases
-end-
Journal article:

Kaori Hayashi, Fumiki Okamoto, Sujin Hoshi, Takuya Katashima, Denise Zujur, Xiang Li, Mitsuhiro Shibayama, Elliot P. Gilbert, Ung-il Chung, Shinsuke Ohba, Tetsuro Oshika, Takamasa Sakai, Fast-forming hydrogels with ultralow polymeric component as an artificial vitreous body, Nature Biomedical Engineering, Online edition, March 2017
URL: https://dx.doi.org/10.1038/s41551-017-0044
DOI:10.1038/s41551-017-0044

Collaborating institutions:

University of Tsukuba
Osaka University
Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation

Links:

Graduate School of Engineering, The University of Tokyo
Sakai/Chung Laboratory, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo

Research contact:

Takamasa Sakai, Ph.D.
Associate Professor, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo
Tel:+81-3-5841-1873
e-mail: sakai@tetrapod.t.u-tokyo.ac.jp

Press officer contact:

Name: Yayoi Miyagawa
Public Relations Office, Graduate School of Engineering, The University of Tokyo
Address: 7-3-1 Hongo,
Bunkyo-ku, Tokyo, 113-8656
Tel: +81-3-5841-1790
Fax: +81-3-5841-0529
Email: kouhou@pr.t.u-tokyo.ac.jp

Funding:

This work was supported by the Japan Society for the Promotion of Science (JSPS) through Grants-in-Aid for the Graduate Program for Leaders in Life Innovation (GPLLI), the International Core Research Center for Nanobio, Core-to-Core Program A. Advanced Research Networks, and Grants-in-Aid for Young Scientists (A) Grant Number 23700555 to TS, Scientific Research (S) Grant Number 16H06312 to UC, and Scientific Research (C) Grant Number 26462631 to FO. This work was also supported by the Japan Science and Technology Agency (JST) through the S-innovation program and Center of Innovation program (to UC) and PREST (to TS).

About the University of Tokyo

The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

University of Tokyo

Related Hydrogel Articles:

Micron-sized hydrogel cubes show highly efficient delivery of a potent anti-cancer drug
Researchers at the University of Alabama at Birmingham and Texas Tech University Health Sciences Center have developed micro-cubes that can sponge up a hydrophobic anti-cancer drug and deliver it to cancer cells.
3-D-printable implants may ease damaged knees
A cartilage-mimicking material created by researchers at Duke University may allow surgeons to 3-D print knee menisci or other replacement parts that are custom-shaped to each patient's anatomy.
Rabbits' detached retina 'glued' with new hydrogel
A newly developed elastic gel administered in liquid form and shown to turn jellylike within minutes after injection into rabbits' eyes to replace the clear gelatinous fluid inside their eyeballs, may help pave the way for new eye surgery techniques, says an international team of researchers led by Japanese scientists.
Transparent gel-based robots can catch and release live fish
Engineers at MIT have fabricated transparent, gel-based robots that move when water is pumped in and out of them.
Skin cells 'crawl' together to heal wounds treated with unique hydrogel layer
A team led by Professor Milica Radisic in U of T Engineering has demonstrated for the first time that their peptide-hydrogel biomaterial prompts skin cells to 'crawl' toward one another, closing chronic, non-healing wounds often associated with diabetes, such as bed sores and foot ulcers.
More Hydrogel News and Hydrogel Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.