Nav: Home

When sciences come together

March 09, 2018

Kyoto, Japan -- In a new report in the Proceedings of the Royal Society B, Christian E Vincenot from Kyoto University's Department of Social Informatics investigates how seemingly separate concepts in scientific fields fuse to become universal approaches.

Sometimes it's just a matter of a few words and key papers.

Research collaboration can represent a peak of scientific advancement. The merging of concepts leads to previously unexplored questions and methods, spurring innovation. But disciplinary boundaries limit such development, hindering understanding of key vocabulary or concepts.

Vincenot chose to compare two modeling concepts: ABM -- agent based modeling -- and IBM -- individual based modeling. ABM is used frequently in the computer sciences, while IBM is utilized primarily in ecology.

As it turns out, both are based on the same principle, and are used to study complex systems by modeling a single individual and then scaling that behavior up to a larger population.

"A few years ago I was presenting my research at an interdisciplinary talk involving ecologists and computer scientists," reflects Vincenot. "I started using ABM and IBM interchangeably, which began to cause confusion. People unfamiliar with the similarity were surprised when I told them that the modeling principles are the same."

These interactions raised the question: how do two concepts evolve separately in different scientific domains and then converge into a universal standard?

Vincenot began by developing a new methodology to analyze citations in papers that used the two terms, and tracked the changes over time. He mapped individual papers and connect these with papers they had cited, resulting in publications citing the same paper being close to each other.

ABM and IBM, he found, were initially disjointed and isolated within their respective fields. But over time, the literature began to merge, and by 2015 -- 12,000 publications later -- a distinct fusion of the two terms could be observed.

"The most surprising thing is that only a few publications were required for this fusion between ABM and IBM to happen," explains Vincenot. "Out of all the papers, only six were key for the fusion. And these weren't necessarily the most cited papers."

He hypothesizes that three things are needed for fusion to occur: researchers being aware of issues in different fields; common language, terminology, and software being developed; and most importantly, developing more unified theories.

Vincenot clarifies: "Awareness and communication are enough to instigate interdisciplinary work, but ultimately they are insufficient to give rise to a self-standing science. We need more transcendental theories, which serve as frameworks for sciences to develop in a self-sustaining manner. Basically, we must interpret current results and use them as building blocks to recursively create new theories."

The next step in his study is to confirm the conjectures by using other concepts and terms in science. Thankfully the methodology is easy to apply: it's just a matter of finding new ideas.
The paper "How new concepts become universal scientific approaches: insights from citation network analysis of agent-based complex systems science" appeared 7 March 2018 in Proceedings of the Royal Society B, with doi: 10.1098/rspb.2017.2360

Kyoto University is one of Japan and Asia's premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see:

Kyoto University

Related Fusion Articles:

Feeding off fusion or the immortalization of tumor cells
Despite all recent progress, cancer remains one of the deadliest human diseases.
An unprecedented discovery of cell fusion
Understanding how bacteria interact is critical to solving growing problems such as antibiotic resistance, in which infectious bacteria form defenses to thwart the medicines used to fight them.
Revised code could help improve efficiency of fusion experiments
Researchers led by PPPL have upgraded a key computer code for calculating forces acting on magnetically confined plasma in fusion energy experiments.
Mathematical noodling leads to new insights into an old fusion problem
Scientists at PPPL have gained new insight into a common type of plasma hiccup that interferes with fusion reactions.
Lose weight of fusion reactor component
Superconducting coils in a fusion power reactor exert a huge electromagnetic force.
Scientists develop new tool to design better fusion devices
One way that scientists seek to bring to Earth the fusion process that powers the stars is trapping plasma within a twisting magnetic coil device shaped like a breakfast cruller.
Discovery about the edge of fusion plasma could help realize fusion power
Unique PPPL simulations reveal new understanding of the highly complex edge of fusion plasmas.
Feeding fusion: hydrogen ice pellets prove effective for fueling fusion plasmas
Injecting pellets of hydrogen ice rather than puffing hydrogen gas improves fusion performance.
Fusion by strong lasers
Nuclear physics usually involves high energies, as illustrated by experiments to master controlled nuclear fusion.
Researchers develop new database of druggable fusion targets
By analyzing over a million nucleic acid sequences from publicly available data, a team of researchers has identified 111,582 fusions in eight species (human, mouse, rat, fruit-fly, wild boar, zebrafish, yeast and cattle).
More Fusion News and Fusion Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at