Nav: Home

Machine learning could improve the diagnosis of mastitis infections in cows

March 09, 2020

The new study, published today in Scientific Reports, has found that machine learning has the potential to enhance and improve a veterinarian's ability to accurately diagnose herd mastitis origin and reduce mastitis levels on dairy farms.

Mastitis is an extremely costly endemic disease of dairy cattle, costing around £170 million in the UK. A crucial first step in the control of mastitis is identifying where mastitis causing pathogens originate; does the bacteria come from the cows' environment or is it contagiously spread through the milking parlour?

This diagnosis is usually performed by a veterinarian by analysing data from the dairy farm and is a cornerstone of the widely used Agriculture and Horticulture Development Board (AHDB) mastitis control plan, however this requires both time and specialist veterinary training.

Machine learning algorithms are widely used, from filtering spam emails and the suggestion of Netflix movies to the accurate classification of skin cancer. These algorithms approach diagnostic problems as a student doctor or veterinarian might; learning rules from data and applying them to new patients.

This study, which was led by veterinarian and researcher Robert Hyde from the School of Veterinary Medicine and Science at the University of Nottingham, aims to create an automated diagnostic support tool for the diagnosis of herd level mastitis origin, an essential first step of the AHDB mastitis control plan.

Mastitis data from 1,000 herds' was inputted for several three-month periods. Machine learning algorithms were used to classify herd mastitis origin and compared with expert diagnosis by a specialist vet.

The machine learning algorithms were able to achieve a classification accuracy of 98% for environmental vs contagious mastitis, and 78% accuracy was achieved for the classification of lactation vs dry period environmental mastitis when compared with expert veterinary diagnosis.

Dr Hyde said: "Mastitis is a huge problem for dairy farmers, both economically and in welfare terms. In our study we have shown that machine learning algorithms can accurately diagnose the origin of this condition on dairy farms. A diagnostic tool of this kind has great potential in the industry to tackle this condition and to assist veterinary clinicians in making a rapid diagnosis of mastitis origin at herd level in order to promptly implement control measures for an extremely damaging disease in terms of animal health, productivity, welfare and antimicrobial use."
-end-
A full copy of the study - 'Automated diagnosis of mastitis infection patterns in dairy herds using machine learning' - is available here.

University of Nottingham

Related Data Articles:

Data centers use less energy than you think
Using the most detailed model to date of global data center energy use, researchers found that massive efficiency gains by data centers have kept energy use roughly flat over the past decade.
Storing data in music
Researchers at ETH Zurich have developed a technique for embedding data in music and transmitting it to a smartphone.
Life data economics: calling for new models to assess the value of human data
After the collapse of the blockchain bubble a number of research organisations are developing platforms to enable individual ownership of life data and establish the data valuation and pricing models.
Geoscience data group urges all scientific disciplines to make data open and accessible
Institutions, science funders, data repositories, publishers, researchers and scientific societies from all scientific disciplines must work together to ensure all scientific data are easy to find, access and use, according to a new commentary in Nature by members of the Enabling FAIR Data Steering Committee.
Democratizing data science
MIT researchers are hoping to advance the democratization of data science with a new tool for nonstatisticians that automatically generates models for analyzing raw data.
Getting the most out of atmospheric data analysis
An international team including researchers from Kanazawa University used a new approach to analyze an atmospheric data set spanning 18 years for the investigation of new-particle formation.
Ecologists ask: Should we be more transparent with data?
In a new Ecological Applications article, authors Stephen M. Powers and Stephanie E.
Should you share data of threatened species?
Scientists and conservationists have continually called for location data to be turned off in wildlife photos and publications to help preserve species but new research suggests there could be more to be gained by sharing a rare find, rather than obscuring it, in certain circumstances.
Futuristic data storage
The development of high-density data storage devices requires the highest possible density of elements in an array made up of individual nanomagnets.
Making data matter
The advent of 3-D printing has made it possible to take imaging data and print it into physical representations, but the process of doing so has been prohibitively time-intensive and costly.
More Data News and Data Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.