Looking outside the fiber: Researchers demonstrate new concept of optical fiber sensors

March 09, 2020

Optical fibers enable our era of the internet, as they carry vast amounts of data all around the world. Fibers are also an excellent sensor platform. They can reach over hundreds of kilometers, simply embedded within structures, and can be installed in hazardous environment where the use of electricity is prohibited. However, optical fiber sensors also face an inherent, fundamental challenge.

"Everything the light touches is our kingdom," says doctoral student Hagai Diamandi from the Faculty of Engineering at Bar-Ilan University in Israel. "In that, we mean to say that any optical measurement mandates that light should touch the medium under test." Standard optical fibers, however, are designed to do the exact opposite. "Standard fibers are made of a glass cladding, with a much thinner, inner core," continues Diamandi. "Light is guided at the inner core, and every effort is made to keep light from leaking outside. A substance under test, in most cases, lies outside the much larger cladding. Unfortunately, guided light does not touch upon much of the outside world."

A possible solution is available based on other forms of propagation in the same fiber. Doctoral student Yosef London explains: "In addition to the core mode, light can propagate in the fiber by filling out the entire cladding. In that case, it may 'feel' what's outside." But how do you get light to switch from the 'normal' core mode to those cladding modes? London continues: "Here there's a catch. Coupling to the cladding modes requires the inscription of permanent, periodic perturbations in the fiber medium, called 'gratings'. Gratings are written at specific, discrete locations. You cannot erase them or move them about." For that reason, cladding mode sensors are limited to point-measurements only.

The main strength of optical fiber sensors is spatially-distributed analysis, in which every fiber segment serves as an independent measurement node. Cladding modes could not support distributed measurements, until now. The breakthrough idea came from a third doctoral student in the group, Gil Bashan: "There is an alternative to the use of gratings. We can launch two strong optical waves into the fiber instead. When their frequencies are chosen correctly, the two waves can drive acoustic oscillations within the core of the fiber, at very high hypersonic frequencies. Those acoustic waves become our gratings." The principle is known as Brillouin dynamic gratings. Unlike permanent inscription, Brillouin dynamic gratings can be switched on and off at will. They can also be confined to short segments of arbitrary locations, and scanned along the fiber. "The principle has been used between core modes of fibers for over a decade," says Bashan. "We carry it over to the cladding modes."

In a paper published recently in Optica journal, the group reports a distributed cladding mode fiber sensor, a first of its kind. In doing so, they had to overcome considerable obstacles. Advisor Prof. Avi Zadok explains: "There is large disparity in size between core and cladding modes. Core modes are confined to a very tight region. Cladding modes spread over an area 200 times larger. For that reason, we were concerned that the coupling between the two modes would be weak and inefficient." Nevertheless, the team could show the precise measurement of refractive index outside the cladding boundary of standard, unmodified optical fiber. The spatial resolution of the measurements was eight centimeters. The analysis correctly identified short fiber sections immersed in water and ethanol, and clearly distinguished between the two. The uncertainty in index measurements was in the fourth decimal point.

Prof. Zadok concludes: "We have demonstrated a new concept of optical fiber sensors. It addresses a decades-long challenge: the distributed mapping of refractive index outside the cladding of standard fiber, where light does not reach." The sensor can be used for leak detection in critical infrastructure, and process monitoring in the petrochemical industry, desalination plants, food and beverage production and more.
-end-


Bar-Ilan University

Related Light Articles from Brightsurf:

Light from rare earth: new opportunities for organic light-emitting diodes
Efficient and stable blue OLED is still a challenge due to the lack of emitter simultaneously with high efficiency and short excited-state lifetime.

Guiding light: Skoltech technology puts a light-painting drone at your fingertips
Skoltech researchers have designed and developed an interface that allows a user to direct a small drone to light-paint patterns or letters through hand gestures.

Painting with light: Novel nanopillars precisely control intensity of transmitted light
By shining white light on a glass slide stippled with millions of tiny titanium dioxide pillars, researchers at the National Institute of Standards and Technology (NIST) and their collaborators have reproduced with astonishing fidelity the luminous hues and subtle shadings of 'Girl With a Pearl Earring.'

Seeing the light: Researchers combine technologies for better light control
A new technology that can allow for better light control without requiring large, difficult-to-integrate materials and structures has been developed by Penn State researchers.

A different slant of light
Giant clams manipulate light to assist their symbiotic partner.

New light for plants
Scientists from ITMO in collaboration with their colleagues from Tomsk Polytechnic University came up with an idea to create light sources from ceramics with the addition of chrome: the light from such lamps offers not just red but also infrared (IR) light, which is expected to have a positive effect on plants' growth.

Scientists use light to accelerate supercurrents, access forbidden light, quantum world
Iowa State's Jigang Wang continues to explore using light waves to accelerate supercurrents to access the unique and potentially useful properties of the quantum world.

The power of light
As COVID-19 continues to ravage global populations, the world is singularly focused on finding ways to battle the novel coronavirus.

Seeing the light: MSU research finds new way novae light up the sky
An international team of astronomers from 40 institutes across 17 countries found that shocks cause most the brightness in novae.

Seeing the light: Astronomers find new way novae light up the sky
An international team of researchers, in a paper published today in Nature Astronomy, highlights a new way novae light up the sky: this is shocks from explosions that create the novae that cause most of the their brightness.

Read More: Light News and Light Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.