Fresh groundwater flow important for coastal ecosystems

March 09, 2020

Groundwater is the largest source of freshwater, one of the world's most precious natural resources and vital for crops and drinking water. It is found under our very feet in the cracks and pores in soil, sediments and rocks. Now an international research team led by the University of Göttingen has developed the first global computer model of groundwater flow into the world's oceans. Their analysis shows that 20% of the world's sensitive coastal ecosystems - such as estuaries, salt marshes and coral reefs - are at risk of pollutants transported by groundwater flow from the land to the sea. The research was published in Nature Communications.

The researchers quantified groundwater flow in coastal regions worldwide by combining a newly designed computer model code with a global data analysis of topography, groundwater replenishment and characteristics of the layers of rock below the surface. Their results show that although the flow of fresh groundwater is very low, it is highly variable. This means that for small areas of the coastline, the flow is high enough to act as an important source of freshwater. However, when polluted or carrying an excess of nutrients due to human activity, this actually poses risks to sensitive coastal ecosystems.

The new results question earlier claims that fresh groundwater flow influences the carbon, iron and silica budget of the oceans as a whole. However, the local effects of groundwater flow along coastlines are important. Groundwater provides a fresh water resource that has been and is still essential in many places around the world. Although this is still poorly understood, the mixing of fresh groundwater and seawater may support local ecosystems that are adapted to slightly salty water. The largest negative effect on coastal ecosystems comes from nutrients such as nitrogen and pollutants, which people have introduced on the land, and which then seeps towards the coast. It may take years or even decades to flow to the sea where it will then affect coastal marine ecosystems.

As first author, Dr Elco Luijendijk, University of Göttingen Department of Structural Geology and Geodynamics, says, "We very much hope these new results and the data our model has revealed will motivate follow-up from more detailed studies. It is important to monitor and understand the effects of fresh groundwater flow on coastal ecosystems, especially in regions that have so far not been studied in detail, such as large parts of South America, Africa and southern Asia and many tropical islands."
-end-
Original publication: Luijendijk et al. "Fresh groundwater discharge insignificant for the world's oceans but important for coastal ecosystems". Nature Communications (2020). DOI: 10.1038/s41467-020-15064-8

See also: https://www.nature.com/articles/s41467-020-15064-8

Contact

Dr Elco Luijendijk
University of Göttingen
Department of Structural Geology and Geodynamics
Goldschmidtstraße 3, 37077 Göttingen, Germany
Tel: +49 (0)551 39 19826
Email: elco.luijendijk@geo.uni-goettingen.de
https://www.uni-goettingen.de/en/487484.html

University of Göttingen

Related Coral Reefs Articles from Brightsurf:

The cement for coral reefs
Coral reefs are hotspots of biodiversity. As they can withstand heavy storms, they offer many species a safe home.

Palau's coral reefs: a jewel of the ocean
The latest report from the Living Oceans Foundation finds Palau's reefs had the highest coral cover observed on the Global Reef Expedition--the largest coral reef survey and mapping expedition in history.

Shedding light on coral reefs
New research published in the journal Coral Reefs generates the largest characterization of coral reef spectral data to date.

Uncovering the hidden life of 'dead' coral reefs
'Dead' coral rubble can support more animals than live coral, according to University of Queensland researchers trialling a high-tech sampling method.

Collaboration is key to rebuilding coral reefs
The most successful and cost-effective ways to restore coral reefs have been identified by an international group of scientists, after analyzing restoration projects in Latin America.

Coral reefs show resilience to rising temperatures
Rising ocean temperatures have devastated coral reefs all over the world, but a recent study in Global Change Biology has found that reefs in the Eastern Tropical Pacific region may prove to be an exception.

Genetics could help protect coral reefs from global warming
The research provides more evidence that genetic-sequencing can reveal evolutionary differences in reef-building corals that one day could help scientists identify which strains could adapt to warmer seas.

Tackling coral reefs' thorny problem
Researchers from the Okinawa Institute of Science and Technology Graduate University (OIST) have revealed the evolutionary history of the crown-of-thorns starfish -- a predator of coral that can devastate coral reefs.

The state of coral reefs in the Solomon Islands
The ''Global Reef Expedition: Solomon Islands Final Report'' summarizes the foundation's findings from a monumental research mission to study corals and reef fish in the Solomon Islands and provides recommendations on how to preserve these precious ecosystems into the future.

Mysterious glowing coral reefs are fighting to recover
A new study by the University of Southampton has revealed why some corals exhibit a dazzling colorful display, instead of turning white, when they suffer 'coral bleaching' -- a condition which can devastate reefs and is caused by ocean warming.

Read More: Coral Reefs News and Coral Reefs Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.