Nav: Home

Smart scaffolding to monitor tumor growth in real time and controlled environments

March 09, 2020

It is a project geared towards the study of cancer, melanoma and breast cancer, in particular, and seeks to better understand the growth and dynamics of tumours, which also avoids the need for animal experiments. 4DbioSERS is a five-year project funded by 2.4 million euros from the European Research Council (ERC) as part of the prestigious ERC Advanced Grants call awarded to high-risk and high-gain projects.

Liz-Marzán sums up the key aspects of the project thus: "We are working on the building of a kind of micrometric scaffolding using various methods (including 3D printing) and which has gold nanoparticles that will act as sensors built into it. A mixture of tumour cells, other types of cells and other components are cultured inside the scaffolding to reproduce a real tumour as faithfully as possible so that the aforementioned nanosensors will allow us to detect biomarkers relating to the evolution of the tumour in a range of conditions, which include changing the temperature or pH, adding drugs or creating other conditions that could affect it and which will help to design more effective treatments afterwards." They are also considering "marking some of the cells to see how they are displaced inside the tumour, or to see whether certain types of cells are segregated in a specific place so that the heterogeneity of the tumour can be studied", he added.

The tool used to detect the biomarkers and monitor the displacement of the cells is SERS (surface-enhanced Raman spectroscopy), which is capable of analysing a broad variety of substances using very low spatial resolution, even at extremely low concentrations. SERS uses the gold nanoparticles as sensors and also as labels, as well as a laser that enables the molecules close to these nanoparticles to be seen.

Progress in parallel towards a single aim

In just over one year "we have achieved results that tell us we are heading in the right direction", confirmed the Ikerbasque professor. Firstly, they have shown that by using nanoparticles encoded for SERS "we can produce a three-dimensional reconstruction of systems formed by different types of cells organised into multilayers with a resolution that allows us to differentiate between each layer of cells over relatively long periods of time". The advantage of the encoded particles used in this system is that they do not degrade over time, unlike fluorescent molecules routinely used for detections of this type. The research group has managed to produce "a kind of three-dimensional map of the positioning of the cells inside these complex systems; in other words, they have succeeded in controlling the fabricated cell system to be able to demonstrate the three-dimensional detection of each cell that carries a code provided by the said encoded particles. This is a first step with a view to studying the dynamic evolution of these systems, in other words, to producing a 4D-study (in three dimensions plus time)", he explained.

They have also demonstrated that it is possible to culture tumour cells and measure the evolution of different biomarkers in real time: cancer metabolites or substances that are generated as a result of the presence of cancer cells. "By using specially designed substrates, we have sufficient capacity to detect concentrations that are small enough to be significant in these tumour cultures. That way, we can see how the tumour cells that are developing in the system itself evolve over time and distinguish their behaviour under various conditions," explained Liz-Marzán. Specifically, they have managed to observe the evolution of two metabolites simultaneously; "we have seen that one increases its concentration while the other declines, which confirms that we are seeing in real time the metabolic process caused by enzymes that are expressed in these tumour cells," he added.

Likewise, the detection of a certain molecule indicates that "there are cells of a particular type that are dying in the system under those conditions". Liz-Marzán stresses the importance of this evidence because "it enables us to avail ourselves of practically remote detection, owing to the fact that our detector is not in direct contact with the cells, but simply studies the medium surrounding them. This is a significant step forward with respect to the ultimate objective". Liz-Marzán revealed finally that they are working on the building of scaffolding for cell cultures using a 3D printer, which also allows detections to be made, but he concluded by saying that "there is still a long way to go".
-end-


Elhuyar Fundazioa

Related Breast Cancer Articles:

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.
Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.
Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.
More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.
Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.
Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.
Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.
Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.
Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.
Does MRI plus mammography improve detection of new breast cancer after breast conservation therapy?
A new article published by JAMA Oncology compares outcomes for combined mammography and MRI or ultrasonography screenings for new breast cancers in women who have previously undergone breast conservation surgery and radiotherapy for breast cancer initially diagnosed at 50 or younger.
More Breast Cancer News and Breast Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.