Nav: Home

Show me the methane

March 09, 2020

Though not as prevalent in the atmosphere as carbon dioxide, methane is a far more potent greenhouse gas. Occurring naturally as well as being manmade, methane is much shorter-lived than CO2, but it is fast acting and 20 to 80 times as effective at trapping heat. A little extra methane goes a long way.

In addition, methane is invisible, which makes detection by conventional means difficult. So when UC Santa Barbara researcher Satish Kumar and colleagues noted the growing use of infrared sensing as a means of greenhouse gas detection, as was highlighted in a recent New York Times story, they were pleased. The interactive piece used infrared cameras to track emissions from oil and gas facilities in the Permian Basin, an oil field located in Texas and New Mexico.

It's a topic close to his heart -- as a member of electrical and computer engineering professor B.S. Manjunath's Vision Research Lab, Kumar does work involving multimedia signal processing and analysis.

"As a computer engineer interested in environmental management, I am incredibly glad methane leaks from previously unknown sources are being brought to light," he said.

Now, to keep the conversation alive, Kumar and his colleagues have proposed a system that does the heat detection one better, by using hyperspectral imaging and machine learning to detect the specific wavelength of methane emissions. Their work was presented at the 2020 IEEE Winter Conference on the Applications of Computer Vision.

"Infrared cameras only detect temperature signatures, so if there is a combination of gases with high temperature signatures, an infrared camera will not be able to differentiate between them," Kumar said. An infrared image might point to a suggestion of methane, but its concentration and its location couldn't be pinpointed by heat signature alone. In addition, the farther a hot gas travels from its source, the cooler it gets, eventually making it invisible to infrared.

To overcome these shortcomings, Kumar and team used data from hyperspectral cameras at wavelengths from 400 nanometers to 2,510 nm -- a range that encompasses methane's spectral wavelengths and perhaps those of other gases -- in areas around the Four Corners region. Located in the American Southwest, the region also is the site of what could be the largest source of methane release in the United States, particularly the San Juan Basin, shared by New Mexico and Colorado.

Hyperspectral imaging involves the collection of a series of images, in which each pixel contains a spectrum and each image represents a spectral band (a range of wavelengths). Its high sensitivity allows it to capture spectral "fingerprints" that correspond to certain materials, such as methane's 2,200-2,400 nm wavelengths, which allowed the researchers to locate methane, even in a plume of other gases.

But, methane isn't the only material that exists at that wavelength.

"There are many confusers to methane," Kumar said. "The hydrocarbons from roads and paints on buildings, they have the same signature as methane." The sheer amount of data and the potential for confusion between methane and other hydrocarbons led the researchers to turn to machine learning.

"We used a deep learning model to train the computer to learn the shape that a methane gas leak takes as it is released and spreads," he explained. This helped the researchers not only to pinpoint the location from which methane was being emitted, whether from gas plant or landfill, but also to automatically differentiate between methane and other hydrocarbons in the same image.

Using this method, the researchers report an 87% success rate in the accurate detection of methane leaks, more of which continue to be discovered from a variety of manmade sources. These include fugitive emissions from incomplete flaring, previously undetected leaks from poorly monitored operations, and the cumulative methane leaks from homes, businesses and urban infrastructure.
-end-


University of California - Santa Barbara

Related Methane Articles:

When methane-eating microbes eat ammonia instead
As a side effect of their metabolism, microorganisms living on methane can also convert ammonia.
Making more of methane
Looking closely at the chemical process that transforms methane into useful products could help unveil more efficient ways to use natural gas.
Methane: emissions increase and it's not a good news
It is the second greenhouse gas with even a global warming potential larger than CO2.
Measuring methane from space
A group of researchers from Alaska and Germany is reporting for the first time on remote sensing methods that can observe thousands of lakes and thus allow more precise estimates of methane emissions.
New 3D view of methane tracks sources
NASA's new 3-dimensional portrait of methane concentrations shows the world's second largest contributor to greenhouse warming.
Show me the methane
Though not as prevalent in the atmosphere as carbon dioxide, methane is a far more potent greenhouse gas.
Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.
Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.
Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.
Unexpected culprit -- wetlands as source of methane
Knowing how emissions are created can help reduce them.
More Methane News and Methane Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.