Nav: Home

Research on soldier ants reveals that evolution can go in reverse

March 09, 2020

Turtle ant soldiers look like real-life creatures straight out of a Japanese anime film. These tree-dwelling insects scuttle to and fro sporting shiny, adorably oversized heads, which they use to block the entrances of their nests--essentially acting as living doors.

Not all heads are shaped alike: some soldiers have ones that resemble manhole covers and perfectly seal tunnel entrances. Others have square heads, which they assemble into multi-member blockades reminiscent of a Spartan army's overlapping shields. This variety in head shapes reveals more than just another of nature's quirky oddities: it can also shine a light on how species evolve to fill ecological niches. And that evolution, new research published in the Proceedings of the National Academy of Sciencesshows, is not always a one-way street toward increasing specialization. Occasionally, it can take a species back to a more-generalist stage.

"Usually, you would think that once a species is specialized, it's stuck in that very narrow niche," says Daniel Kronauer, head of Rockefeller's Laboratory of Social Evolution and Behavior. "But turtle ants are an interesting case of a very dynamic evolutionary trajectory, with a lot of back and forth."

A match made in evolution

Like many other social insects living in colonies, turtle ants specialize for different functions, often evolving exaggerated features suited to their job. For the soldiers, this process has resulted in large heads that come in a variety of shapes.

"There's a whopping four-fold difference between the smallest and largest turtle ant soldier heads," says Scott Powell, a biologist at George Washington University and lead author of the new study. "To help people picture this, I often say that the smallest species is able to sit comfortably on the head of the largest species."

The shape and size of a turtle-ant soldier's head is dictated by the type of tunnel the species in question occupies. The ants don't dig the tunnels themselves, but move into those excavated by wood-boring beetles. And since a hand-me-down tunnel might be too big or too small, Kronauer says, the ants diversify rapidly to be able to occupy it.

The relationship between turtle-ant heads and tunnels can hence offer a uniquely clear insight into natural selection. Researchers can easily compare a trait--head circumference--with the ecological feature it's evolved to adapt to: the nest-entrance size. As Kronauer says, "It's a 1:1 match on the exact same scale."

A dynamic process

To examine the evolutionary journey of various head shapes, the researchers grouped 89 species of turtle ants based on whether soldiers sported a square, dome, disc, or dish-shaped head. They also included a group of turtle-ant species that don't have soldiers. They then examined the evolutionary relationships among these groups using the species' genetic information, which they had previously gathered.

If evolution was a one-way path, the first turtle ants that appeared some 45 million years ago should have lacked soldiers altogether, then gradually evolved toward specialization--starting with the generalist, square-headed soldiers, all the way to those with highly-tailored dish heads.

But the new analysis suggests that this was not the case. Instead, the oldest common ancestor the researchers could trace likely had a square head. That ancestor went on to form a range of species, from ones with no soldiers at all to others with different levels of specialization. In some cases, more specialist species reversed direction over time, evolving back into more generalist head shapes.

The finding nicely shows just how surprisingly flexible nature can be in fitting the shape of an organism to the context of the environment they occupy, Powell says.

"The space that evolution has to play with is actually quite a bit larger than previously thought," Kronauer adds.
-end-


Rockefeller University

Related Evolution Articles:

Artificial evolution of an industry
A research team has taken a deep dive into the newly emerging domain of 'forward-looking' business strategies that show firms have far more ability to actively influence the future of their markets than once thought.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.