Nav: Home

Ultrathin organic solar cell is both efficient and durable

March 09, 2020

Scientists from the RIKEN Cluster for Pioneering Research and RIKEN Center for Emergent Matter Science have succeeded, in collaboration with international partners, in creating an ultrathin organic solar cell that is both highly efficient and durable. Using a simple post-annealing process, they created a flexible organic cell that degrades by less than 5 percent over 3,000 hours in atmospheric conditions and that simultaneously has an energy conversion ratio--a key indicator of solar cell performance--of 13 percent.

Organic photovoltaics are considered to be a promising alternative to silicon-based conventional films, being more environmentally friendly and cheap to produce. Ultrathin flexible solar cells are particularly attractive, as they could provide large power per weight and be used in a variety of useful applications such as powering wearable electronics and as sensors and actuators in soft robotics. However, ultrathin organic films tend to be relatively efficient, typically having an energy conversion ratio of around 10 to 12 percent, significantly lower than the ratio in silicon cells, which can be as high as 25 percent, or of rigid organic cells, which can be up to around 17 percent. Ultrathin films also tend to degrade rapidly under the influence of sunlight, heat, and oxygen. Researchers are trying to create ultrathin films that are both energy efficient and durable, but it is often a difficult tradeoff.

In research published in Proceedings of the National Academy of Sciences of the United States of America, the group succeeded in showing that an ultrathin cell can be both durable and efficient. The group began with a semiconductor polymer for the donor layer, developed by Toray Industries, Inc., and experimented with a new idea, of using a non-fullerene acceptor, increasing the thermal stability. On top of this, they experimented with a simple post-annealing process, where the material was heated to 150 degrees Celsius after an initial annealing at 90 degrees. This step proved to be critical in increasing the durability of device by creating a stable interface between the layers.

According to Kenjiro Fukuda, one of the authors of the study, "By combining a new power generation layer with a simple post-annealing treatment, we have achieved both high energy conversion efficiency and long-term storage stability in ultra-thin organic solar cells. Our research shows that ultra-thin organic solar cells can be used to supply high power in a stable way over long periods of time, and can be used even under severe conditions such as high temperature and humidity. I very much hope that this research will contribute to the development of long-term stable power supply devices that can be used in wearable electronics such as sensors attached to clothes."
-end-
The research was led by RIKEN researchers and done in collaboration with researchers from the University of Tokyo, University of California at Santa Barbara, and Monash University.

RIKEN

Related Atmospheric Conditions Articles:

New, rapid mechanism for atmospheric particle formation
Carnegie Mellon University researchers working with an international team of scientists have discovered a previously unknown mechanism that allows atmospheric particles to very rapidly form under certain conditions.
Future aerosol emission reductions will worsen atmospheric diffusion conditions in eastern China
The climate effects induced by aerosol reduction plays a leading role in the anticyclone change in eastern China.
Atmospheric chemists move indoors
Most people spend the majority of their time at home, yet little is known about the air they breathe inside their houses.
Getting the most out of atmospheric data analysis
An international team including researchers from Kanazawa University used a new approach to analyze an atmospheric data set spanning 18 years for the investigation of new-particle formation.
New clues to origins of mysterious atmospheric waves in Antarctica
CU Boulder team finds link between gravity waves in the upper and lower Antarctic atmosphere, helping create a clearer picture of global air circulation.
Responses of the tropical atmospheric circulation to climate change
An international team describes the climate change-induced responses of the tropical atmospheric circulation and their impacts on the hydrological cycle.
Atmospheric seasons could signal alien life
To complement traditional biosignatures, and thanks to funding from the NASA Astrobiology Institute, scientists at the University of California, Riverside's Alternative Earths Astrobiology Center are developing the first quantitative framework for dynamic biosignatures based on seasonal changes in the Earth's atmosphere.
The Eurasian atmospheric circulation anomalies can persist from winter to the following spring
Surface air temperature (SAT) anomalies have pronounced impacts on agriculture, socioeconomic development, and people's daily lives.
A new 'atmospheric disequilibrium' could help detect life on other planets
A new study has found a simple approach to look for life that might be more promising than just looking for oxygen.
Which came first: Complex life or high atmospheric oxygen?
The appearance of high oxygen levels in Earth's atmosphere occurred sometime between 800 and 400 million years ago, while the rise of complex, multicellular life occurred 800-700 million years ago.
More Atmospheric Conditions News and Atmospheric Conditions Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Biology Of Sex
Original broadcast date: May 8, 2020. Many of us were taught biological sex is a question of female or male, XX or XY ... but it's far more complicated. This hour, TED speakers explore what determines our sex. Guests on the show include artist Emily Quinn, journalist Molly Webster, neuroscientist Lisa Mosconi, and structural biologist Karissa Sanbonmatsu.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

The Wubi Effect
When we think of China today, we think of a technological superpower. From Huweai and 5G to TikTok and viral social media, China is stride for stride with the United States in the world of computing. However, China's technological renaissance almost didn't happen. And for one very basic reason: The Chinese language, with its 70,000 plus characters, couldn't fit on a keyboard.  Today, we tell the story of Professor Wang Yongmin, a hard headed computer programmer who solved this puzzle and laid the foundation for the China we know today. This episode was reported and produced by Simon Adler with reporting assistance from Yang Yang. Special thanks to Martin Howard. You can view his renowned collection of typewriters at: antiquetypewriters.com Support Radiolab today at Radiolab.org/donate.