Small molecules block cancer gene

March 10, 2009

HOUSTON (March 10, 2009) - Finding molecules that block the activity of the oncogene Stat 3 (signal transducer and activator of transcription) required screening literally millions of compounds, using computers that compared the structure of the cancer-causing gene to those of the small molecules, said a Baylor College of Medicine researcher in a report that appears in the current online issue of the journal PLoS One (Public Library of Science ONE).

It was worth the effort, said Dr. David J. Tweardy, professor of medicine and molecular and cellular biology and chief of the division of infectious diseases at BCM, because it could point the way to better treatment of breast and other cancers, as well as chronic viral infections, asthma, and inflammatory bowel disease. He is also on the faculty of Dan L. Duncan Cancer Center.

The "virtual" high throughput screening looked at the possibility of "docking" 920,000 small drug-like compounds into a pocket of a specific domain of Stat3, said Tweardy. In other words, Tweardy and his colleagues identified an area on the Stat3 molecule that was important to its activity. Stat3 actually is critical in keeping malignant cells alive in the majority of cancers.

Once Tweardy and his colleagues had identified a critical "pocket" on Stat3, they used the computer to look for small molecules that would fit in that pocket and block the ability of Stat3 to maintain the cancer cell. That screen of nearly 1 million small molecules identified three likely compounds.

Assays of these compounds showed that they did halt the activity of Stat3 in the laboratory. With that information, Tweardy and his colleagues then screened another 2.47 million compounds for similarity to the original three.

They found another three. While five of the six had some activity in stopping Stat3, one - called 188 - was most effective. Three of the six worked to induce programmed cell death or apoptosis in breast cancer cell lines.

"It induced death in those breast cancer cells that depend for their survival on Stat3," said Tweardy.

Tweardy and his colleagues are now looking at second generation compounds that promise to be even more effective against Stat3.

When he and his colleagues started looking at Stat3, they knew it was important in cancers of the head and neck. Further research showed that it also was important in breast, lung and prostate cancers as well as multiple myeloma (a cancer affect blood-forming cells) and acute myelogenous leukemia.

Stat3 also plays a role in chronic virus infections, asthma, psoriasis and inflammatory bowel disease - all areas that Tweardy and his colleagues hope to pursue in the future.
-end-
Others who took part in this research include Xuejun Xu, Moses M. Kasembeli, Xueqing Jiang and Benjamin J. Tweardy, all of BCM.

Funding for this research comes from the National Cancer Institute.

This report is available at http://dx.plos.org/10.1371/journal.pone.0004783.

For more information on basic science research at Baylor College of Medicine, please go to www.bcm.edu/fromthelab. For information on patient research, go to www.bcm.edu/findings.

Baylor College of Medicine

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.