Researchers identify new way the malaria parasite and red blood cells interact

March 10, 2009

RICHMOND, Va. (March 10, 2009) -- Virginia Commonwealth University Life Sciences researchers have discovered a new mechanism the malaria parasite uses to enter human red blood cells, which could lead to the development of a vaccine cocktail to fight the mosquito-borne disease.

Malaria is transmitted to humans through bites from mosquitoes. According to the Centers for Disease Control and Prevention, between 350 million and 500 million cases of malaria occur world-wide annually, and more than 1 million people, mostly children living in areas of Africa south of the Sahara, die each year from it.

For decades, researchers have known that a molecule called glycophorin B, which is found on the surface of human red blood cells, is important for invasion of the malaria parasite. However, the specific molecule by which the malaria parasite attaches itself to invade the host was not known until now.

The team examined how the malaria parasite, Plasmodium falciparum, interacts with red blood cells using a biochemical test that looks specifically at how the parasite and host bind to each other. The findings revealed that the EBL-1 molecule is the specific attachment site used by the parasite on glycophorin B.

The study was published online in the Early Edition of the Proceedings of the National Academy of Sciences the week of March 9.

"We have now identified how the parasite binds to glycophorin B on the red blood cells. Down the road, the EBL-1 molecule could be used as a vaccine target against malaria as part of a multivalent vaccine, or vaccine cocktail," said principal investigator Ghislaine Mayer, Ph.D., assistant professor in the VCU Department of Biology.

Additionally, Mayer and her team hypothesize that the malaria parasite may be the cause of the loss of the gene for glycophorin B in the pygmies of Ituri forest in the Democratic Republic of Congo.

According to Mayer, these findings suggest that the parasite may possibly be putting selective pressure on populations in malaria-endemic areas, such as the Democratic Republic of Congo. She said that there appears to be a disproportionate number of individuals in malaria-endemic areas with unusual or mutated red blood cell surface molecules.

"We think these changes on the surface of the red blood cell may lead to a decrease in the severity of malaria or resistance against malaria. For example, Africans are protected from a form of malaria caused by the Plasmodium vivax parasite because the molecule that the parasite recognizes is missing from the surface of their red blood cells because of a mutation," said Mayer.
-end-
Mayer worked with researchers from the VCU Department of Biology, Jann Cofle, Ph.D., Erin Tracy, Ph.D., Laurence H. Mendoza, Ph.D., and Louis H. Miller, Ph.D.; Lubin Jiang, Ph.D., and Juraj Kabat, Ph.D., with the National Institute of Allergy and Infectious Diseases and Daniel L. Hartl, Ph.D., with the Department of Organismic and Evolutionary Biology at Harvard University.

About VCU and the VCU Medical Center: Virginia Commonwealth University is the largest university in Virginia and ranks among the top 100 universities in the country in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see www.vcu.edu.

Virginia Commonwealth University

Related Malaria Articles from Brightsurf:

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the UmeƄ University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.

Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.

New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.

Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.

Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.

Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.

Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.

Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.

The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.

Read More: Malaria News and Malaria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.