Outside the body our memories fail us

March 10, 2014

New research from Karolinska Institutet and Umeå University demonstrates for the first time that there is a close relationship between body perception and the ability to remember. For us to be able to store new memories from our lives, we need to feel that we are in our own body. According to researchers, the results could be of major importance in understanding the memory problems that psychiatric patients often exhibit.

The memories of what happened on the first day of school are an example of an episodic memory. How these memories are created and how the role that the perception of one's own body has when storing memories has long been inconclusive. Swedish researchers can now demonstrate that volunteers who experience an exciting event whilst perceiving an illusion of being outside their own body exhibit a form of memory loss.

"It is already evident that people who have suffered psychiatric conditions in which they felt that they were not in their own body have fragmentary memories of what actually occurred", says Loretxu Bergouignan, principal author of the current study. "We wanted to see how this manifests itself in healthy subjects."

The study, which is published in the scientific journal PNAS, involved a total of 84 students reading about and undergoing four oral questioning sessions. To make these sessions extra memorable, an actor (Peter Bergared) took up the role of examiner - a (fictional) very eccentric professor at Karolinska Institutet. Two of the interrogations were perceived from a first person perspective from their own bodies in the usual way, while the participants in the other two sessions experienced a created illusion of being outside their own body. In both cases, the participants wore virtual reality goggles and earphones. One week later, they either underwent memory testing where they had to recall the events and provide details about what had happened, in which order, and what they felt, or they had to try to remember the events while they underwent brain imaging with functional magnetic resonance imaging (fMRI).

It then turned out that the participants remembered the 'out-of-body' interrogations significantly worse than those experienced from the normal "In body" perspective. This was the case despite the fact that they responded equally well to the questions from each situation and also indicated that they experienced the same level of emotion. The fMRI scans further revealed a crucial difference in activity in the portion of the temporal lobe - the hippocampus - that is known to be central for episodic memories.

"When they tried to remember what happened during the interrogations experienced out-of-body, activity in the hippocampus was eliminated, unlike when they remembered the other situations", says professor Henrik Ehrsson, the research group leader behind the study. "However, we could see activity in the frontal lobe cortex, so they were really making an effort to remember."

The researchers' interpretation of the results is that there is a close relationship between body experience and memory. Our brain constantly creates the experience of one's own body in space by combining information from multiple senses: sight, hearing, touch, and more. When a memory is created, it is the task of the hippocampus to link all the information found in the cerebral cortex into a unified memory for further long-term storage. During the experience of being outside one's body, this memory storage process is disturbed, whereupon the brain creates fragmentary memories instead.

"We believe that this new knowledge may be important for future research on memory disorders in a number of psychiatric conditions such as post-traumatic stress disorder, borderline personality disorder and certain psychoses where patients have dissociative experiences," says Loretxu Bergouignan.
-end-
Loretxu Bergouignan and Henrik Ehrsson are connected to the Department of Neuroscience at Karolinska Institutet. A contributor to the work was also Lars Nyberg, professor of neuroscience and director of Umeå Center for Functional Brain Imaging at Umeå University. The research was conducted with financial support from, among others ERC, the Swedish Research Council, SSF, the Knut and Alice Wallenberg Foundation, the Human Frontier Science Program, and the Wenner-Gren Foundations.

Publication: 'Out-of-body hippocampal amnesia', Loretxu Bergouignan, Lars Nyberg & Henrik Ehrsson, Proceedings of the National Academy of Sciences (PNAS), online 10-14 March 2014.

More about the research of Henrik Ehrsson:http://www.ehrssonlab.se

More about Umeå Center for Functional Brain Imaging:http://www.umeabrainimaging.com

Contact the Press Office to receive image material:ki.se/pressroom

Karolinska Institutet

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.